

Funded by the European Union

für Meteorologie

.

Funded by the European Union

The ESCAPE-2 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800897

Co-ordinated by

Spectral Transform

Andreas Mueller

ESCAPE: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

10 minutes

- hands-on exercises with Python 60 minutes coffee break and group photo in between
- aliasing 30 minutes
 - parallelization
 - Fast Legendre Transform

Overview

• Fourier transform Spectral transform

performance

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 9km

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 5km forecast (future operational)

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 30 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 1.25km forecast (experiment, no ocean)

Fourier transform

Fourier transform = Spectral transform in 1D

Funded by the European Union

location x

Fourier transform

Fourier transform = Spectral transform in 1D

grid point space

Funded by the European Union

Fourier space

 ${\boldsymbol{\mathcal{N}}}$

Funded by the European Union

Fourier transform

 ${\boldsymbol{\mathcal{N}}}$

Funded by the European Union

Fourier transform

grid point space

on the sphere: spectral transform

Funded by the European Union

spectral space

grid point space

Funded by the European Union

on the sphere: spectral transform

Funded by the European Union

on the sphere: spectral transform

time step in IFS

FFT: Fast Fourier Transform, LT: Legendre Transform

on the classroom computers: run in the terminal: /home/ectrain/trx/NM_TC2019/copyspectral.sh

in the cloud (Microsoft):

click on clone

files:

TCNM2019.ipynb: Python notebook with exercises

Funded by the European Union

hands-on session

https://notebooks.azure.com/anmrde/libraries/tcnm2019

TCNM2019solution.ipynb: notebook including sample solutions

Issue: multiplication of two variables produces shorter waves than grid can handle

Funded by the

Issue: multiplication of two variables produces shorter waves than grid can handle

Funded by the

wave in grid point space

aliasing example 500hPa adiabatic zonal wind tendencies (T159)

COW.

ICC W

aliasing example 500hPa adiabatic meridional wind tendencies (T159)

with aliasing

filtered

aliasing example kinetic energy spectra, 100 hPa

alternatives to using a filter

- **Idea:** use more grid points than spectral coefficients Orszag, 1971:
- 2N+1 gridpoints to N waves : linear grid
- 3N+1 gridpoints to N waves : quadratic grid
- 4N+1 gridpoints to N waves : cubic grid

Funded by the European Union

Spatial filter range

effective resolution of linear and cubic grids (Abdalla et al. 2013)

inverse spectral transform

spectral data: D(f, i, n, m)fields (variables, height levels)

> real and imaginary part

Funded by the European Union

fastest index left (column-major order like in Fortran)

wave numbers m=0,...,N; n=0,...,N-m (N: truncation)

inverse spectral transform

spectral data: D(f, i, n, m)

for each m:

 $\mathbf{S}_m(f,\mathbf{i},\phi) = \sum \mathbf{D}_{e,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{e,m}(n,\phi), \ \mathbf{A}_m(f,\mathbf{i},\phi) = \sum \mathbf{D}_{o,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{o,m}(n,\phi)$ $\phi > 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, \phi) + \mathbf{A}_m(f, \mathbf{i}, \phi)$ $\phi < 0$: $\mathbf{F}(i, m, \phi, f) = \mathbf{S}_m(f, i, -\phi) - \mathbf{A}_m(f, i, -\phi)$

for each ϕ ,f:

 $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data: $G(f, \lambda, \phi)$

Funded by the European Union

m=0,...,N; n=0,...,N-m

P: precomputed Legendre polynomials

> matrix multiplications

FFT: Fast Fourier Transform

inverse spectral transform

odd n

spectral data: D(f, i, n, m)

for each m:

$$\mathbf{S}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{e,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{e,m}(n, \phi),$$
$$\mathbf{A}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{o,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{o,m}(n, \phi)$$

 $\phi > 0: \mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, \phi) + \mathbf{A}_m(f, \mathbf{i}, \phi)$ $\phi < 0: \mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, -\phi) - \mathbf{A}_m(f, \mathbf{i}, -\phi)$

for each ϕ ,f: $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data: $G(f, \lambda, \phi)$

Funded by the European Union

φ,f

φ,λ

parallelisation over these indices lots of MPI communication

inverse Fourier transform

grid point space

spectral space

direct spectral transform

- same like inverse spectral transform
- reverse order
- multiply data with Gaussian quadrature weights before Legendre transform

performance comparison of IFS with other models

Funded by the European Union

(Michalakes et al, NGGPS AVEC report, 2015)

scalability comparison of IFS with other models

(Michalakes et al, NGGPS AVEC report, 2015)

IFS scaling on Summit and PizDaint (CPU only)

spectral transform vs discontinuous Galerkir projected for 5km 2-day forecast

DG, horizontally explicit => 4s timestep, almost no communication

communication volume:

34 TB on 2880 MPI procs

time to solution:

4 hours

Funded by the European Union

IFS (spectral transform): 240s time-step, lots of communication

DG (like on the left)

689 TB on 57600 MPI procs

427 TB on 2880 MPI procs

12 minutes

12 minutes

optimisations by NVIDIA in ESCAPE

Spherical Harmonics Dwarf on NVIDIA Tesla P100

performance in GFlops/s

Funded by the European Union

figure: courtesy of Alan Gray, Peter Messmer (NVIDIA)

optimisations by NVIDIA in ESCAPE

Spherical Harmonics Dwarf TCO639 Test Case 4 GPUs on DGX-1V

Funded by the European Union

figure: courtesy of Alan Gray, Peter Messmer (NVIDIA)

optimisations by NVIDIA in ESCAPE

DGX-1V uses MPI for >=8 GPUs (due to lack of AlltoAll links), all others use CUDA IPC. DGX-2 results use pre-production hardware.

Funded by the European Union

Spherical Harmonics Dwarf TCO639 Test Case DGX-2 vs DGX-1V

figure: courtesy of Alan Gray, Peter Messmer (NVIDIA)

GPUs vs CPUs on Summit

Optalysys: optical processor for spectral transform

Funded by the European Union

Figures used with permission from Optalysys, 2017

total wavenumber

equator

Fast Legendre Transform floating point operations

Number of floating point operations for direct or inverse spectral transforms of a single field, scaled by $N^2 log^3 N$

Fast Legendre Transform wallclock time

2047

3999

Images on slide 2 used under license from <u>shutterstock.com</u>

