

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

Massively Parallel Computing
for NWP and climate

Andreas Mueller

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

Overview • Why do scientists need to know so
much about computer science?

• What do we need to be aware of to
write efficient code?

• How good are we?

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

Why do we as scientists need to know so
much about computer science?

Why do we as scientists need to know so
much about computer science?

computer electricity cost per year

ECMWF ~3 million £

fastest current supercomputer ~15 million $

next generation (exascale) ~20 million $

•Response: computer scientists cannot do everything because
they do not know about different numerical methods

•Excuse 2: just buy a faster computer if the code is not fast enough

•Response: we (and the environment) cannot afford wasting
that much energy!

•Excuse 1: let the computer scientists take care of it

Supercomputer/Cluster

networknodes

Node

memory (DRAM)

CPU CPU CPU

CPU
central processing unit;

does one instruction like
c=a+b per clock cycle

CPU clock rate over time

source: James Reinders, Intel Xeon Phi

Number of cores per chip over time

source: James Reinders, Intel Xeon Phi

http://top500.org

What comes next?

finer resolution

add more processes (e.g.
chemistry)

more ensemble
members

computing/energy
resources

x 10 in each
direction and time

= 10,000 x 10

x 10

x 1,000,000

Computing at ECMWF

Sustained Exaflop in 2033 ?

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

What do we need to be aware of
to write efficient code?

Recommendations •
•
•

Libraries

• BLAS for vector-matrix product or
matrix-matrix product (if matrices
are large)

• Lapack for matrix factorisation (e.g.
LU decomposition)

• some hardware vendors have
special math libraries, e.g. MKL by
Intel

• there are some cases in which
libraries are fairly slow (e.g. BLAS
with very small matrices)

• there are well optimised libraries
for many tasks

Recommendations • try if using libraries is fast enough

Compiler optimisation

• compilers have optimisation flag -On (O0: no optimisation, O3:
strong compiler optimisation)

• O3 is usually much faster than O2, but it can also be slower
than O2

• O3 can produce completely wrong results!
• you can use different compiler flags for different files
• different compiler versions can have very different

performance
• check compiler messages (Intel: ifort -O2 -qopt-report=2

code.f90 -o program)
• make sure that your code runs correctly with different

compilers

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)

Supercomputer/Cluster

networknodes

Node

memory (DRAM)

CPU CPU CPU

Bottlenecks
• network (connection

between nodes)
• connection between

DRAM and processor

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication

Shared memory: OpenMP

real, dimension(N) :: a,b
integer :: i,N
do i=1,N
a(i) = a(i) + b(i)
end do

without OpenMP:

real, dimension(N) :: a,b
integer :: i,N
!$omp parallel do private(i)
do i=1,N
a(i) = a(i) + b(i)
end do
!$omp end parallel do

with OpenMP:

• many threads of a process run on a
single node

• all threads can access the same data
• data may be physically distributed,

but logically shared

Shared memory: OpenMP

real, dimension(N) :: a,b
integer :: i,N
do i=1,N
a(i) = a(i) + b(i)
end do

without OpenMP:

real, dimension(N) :: a,b
integer :: i,N
!$omp parallel do private(i)
do i=1,N
a(i) = a(i) + b(i)
end do
!$omp end parallel do

with OpenMP:

real, dimension(N) :: a,b
integer :: i, N, iStart, iEnd,
myid, numthreads
!$omp parallel private(i,iStart,iEnd)
myid = omp_get_thread_num()
numthreads = omp_get_num_threads()
iStart = ...
iEnd = ...
do i=iStart,iEnd
a(i) = a(i) + b(i)
end do
!$omp end parallel

faster for bigger codes:

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible

Shared memory: OpenMP

real, dimension(N) :: a
real :: sum
integer :: i,N
do i=1,N
sum = sum + a(i)
end do

without OpenMP:
Example 2: race conditions

real, dimension(N) :: a
real :: sum
!$omp parallel do private(i)
do i=1,N
!$omp atomic
sum = sum + a(i)
end do
!$omp end parallel do

working, but slow:

real, dimension(N) :: a
real :: sum
!$omp parallel do private(i)
reduction (+: sum)
do i=1,N
sum = sum + a(i)
end do
!$omp end parallel do

faster:

real, dimension(N) :: a
real :: sum
integer :: i,N
!$omp parallel do private(i)
do i=1,N
sum = sum + a(i)
end do
!$omp end parallel do

with OpenMP (wrong!):

Shared memory: OpenMP
Example 2: race conditions

best: arrange work such that different threads work on different data

example: spectral
element, start with
orange (non-
adjacent) elements

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect

others

Distributed memory: MPI

integer :: len, destination, tag, nreq
comm = mpi_comm_world
call mpi_init(ierr)
call mpi_comm_rank(comm, myid, ierr)
call mpi_comm_size(comm, numproc, ierr)
nreq = 0
...
do i=1,N ! loop over processors with which we

want to communicate
destination = ...
nreq = nreq + 1
call mpi_irecv(recvdata, len, mpi_real,

destination, tag, comm, request(nreq), ierr)
nreq = nreq + 1
call mpi_isend(senddata, len, mpi_real,

destination, tag, comm, request(nreq), ierr)
end do
... do some work ...
call mpi_waitall(nreq, request, status, ierr)
call mpi_finalize(ierr)

• many processes run on multiple
nodes

• process can access only data on the
node it is running

• use communication library MPI
(Message Passing Interface) to access
data on other nodes

Overlap communication and computation

MPI process

MPI process

• try to reduce the physical
distance that data needs to travel
(difficult)

• Example: grid point method with
only next neighbour
communication:
• compute values along

processor boundaries first
(orange) and send result to
neighbours

• compute interior points while
the data is on its way (green)

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication

Use data once per time-step

real, dimension(N) :: a,b
real :: sum
integer :: i,N
sum = 0.0
a = 0.0
b = 0.0
do i=1,N
b(i) = i
end do
do i=1,N
a(i) = a(i) + b(i)
end do
do i=1,N
sum = sum + a(i)
end do
print*,sum

bad example: good:
real, dimension(N) :: a,b
real :: sum
integer :: i,N
sum = 0.0
do i=1,N
a(i) = 0.0
b(i) = i
a(i) = a(i) + b(i)
sum = sum + a(i)
end do
print*,sum

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step

Contiguous memory access

memory
double precision

floating point number (64bit) real, dimension(N,M) :: a,b
integer :: i,j,N,M
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j)
! fast index should be i
end do
end do

Fortran (column major order):

int i,j,N,M;
for (i=0; i<N; i++) {
for (j=0; j<M; j++) {
a[i][j] = a[i][j] + b[i][j]
// fast index should be j
}
}

C (row major order):

cache line
(often 128 Bytes)

store data in the order in which you need it
and use it in this order!

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step
• contiguous memory access

Supercomputer/Cluster

networknodes

Node

memory (DRAM)

CPU CPU CPU

CPU
central processing unit;

does one instruction like
c=a+b per clock cycle

Memory hierarchy inside one node

Cache

Level 1
Level 2

Level 3

...

Level n

CPU

Size of memory

Increasing distance from CPU = larger access time

Example:

L1: 32 kB, latency 3 cycles
L2: 256 kB, latency 10 cycles
L3: 8MB, latency 40 cycles
DRAM: 16GB, latency 200 cycles
DISK: 1TB, latency 1.000.000 cycles

Cache hit – data found in cache
Cache miss – data not found in cache, thus must be copied from lower memory level
Capacity miss – cache runs out of space for new data
Conflict miss – more that one item is mapped to the same location in cache

IFS: divide work into blocks
with length NPROMA

RAPS9 FC T799L91
192 tasks x 4 threads

200

250

300

350

400

450

500

550

1 10 100 1000

Grid Space blocking (NPROMA)

S
E

C
O

N
D

S

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step
• contiguous memory access
• try to fit data into cache

Supercomputer/Cluster

networknodes

Node

memory (DRAM)

CPU CPU CPU

Bottlenecks
• network (connection

between nodes)
• connection between

DRAM and processor

Fast and slow operations

• In terms of cost
• Fast and inexpensive: add, multiply, sub, fma (fused multiply add)
• Medium: divide, modulus, sqrt
• Slow: power, trigonometric functions

• try linear algebra (BLAS, LAPACK) and math libraries (Intel MKL)

Vectorisation

memory
double precision

floating point number (64bit)

Vectorisation

memory

256bit
register
(BG/Q)

double precision
floating point number (64bit)

+
•

Vectorisation

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

initial version:

optimised for compiler vectorisation:

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

Vectorisation

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

initial version:

optimised for compiler vectorisation:

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

 9.4s

 14.4% vector

 operations

 2.1s

 73.9% vector

 operations
measurements: spectral element model NUMA, NPS

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

vector intrinsics (here for BG/Q)

optimization is not IEEE compliant.
Many of our operations in createrhs looked initially like

code example 2. The operations were computed for each grid
point of the element separately which makes it impossible
for the compiler to vectorize the code. This explains the very
low fraction of vectorized operations in versions A, B, C and
D (column qpx in Table I and II). To improve vectorization
we changed our code in such a way that the operations are
performed for the entire element at once (code example 3).
Our measurements for version F show that this simple step
leads to a significant improvement of the vectorization.

1 real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
2 do e=1,num_elem ! loop through all elements
3 do i=1,num_points_e ! loop through all points of

the element e
4 ... ! compute derivatives rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !i
7 end do !e

Code example 2: Fortran code similar to a function
from the non-optimized initial version of NUMA (used
in versions A, B, C, D and E in Table I and II).

1 real, dimension(num_points_e) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, rhs
3 do e=1,num_elem ! loop through all elements
4 ... ! compute derivatives like rho_x, rho_y, rho_z
5 rhs = u*rho_x + v*rho_y + w*rho_z + ...
6 end do !e

Code example 3: Like code example 2 rewritten for
improved compiler vectorization (used in version F)

B. BG/Q Vector Intrinsics
To make even better use of the vector unit we rewrote

our function createrhs by using BG/Q vector intrinsics (code
example 4). We first kept the computation of the derivatives
unchanged (version G). This gave us another significant
speedup. Using vector intrinsics for the entire function
createrhs gave us another minor speedup (version H).

C. OpenMP
OpenMP allows reducing the number of MPI processes.

This leads for CG storage to a reduced amount of work
for some parts of the code (namely the black text in code
example 1). However, we need to be very careful to avoid
race conditions. In createrhs race conditions can occur in the
summation over all the elements in eq. (4). Using OpenMP
atomic statements made our code too slow. The best solution
that we could find was to reorder the elements inside each
MPI process in such a way that different OpenMP threads
can never compute neighboring elements at the same time.

1 real, dimension(4,4,4) :: rho, rho_x, rho_y, &
2 rho_z, u, v, w, u_x, v_y, w_z, rhs
3 !IBM* align(32, rho, rho_x, rho_y, rho_z, u, v, w,

u_x, v_y, w_z, rhs)
4 ! declare variables representing registers: (each

contains four double precision floating point
numbers)

5 vector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) vct_u, vct_v, vct_w, vct_rhs
7 if (iand(loc(rho), z’1F’) .ne. 0) stop ’rho is not

aligned’
8 ... ! check alignment of other variables
9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 ... ! compute derivatives rho_x, ...
13 ! load always four floating point numbers:
14 vct_u = vec_ld(0, u(1,j,k))
15 vct_v = vec_ld(0, v(1,j,k))
16 vct_w = vec_ld(0, w(1,j,k))
17 vct_rhox = vec_ld(0, rho_x(1,j,k))
18 vct_rhoy = vec_ld(0, rho_y(1,j,k))
19 vct_rhoz = vec_ld(0, rho_z(1,j,k))
20 ! rhs = u*rho_x
21 vct_rhs = vec_mul(vct_u,vct_rhox)
22 ! rhs = rhs + v*rho_y
23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 ! rhs = rhs + w*rho_z
25 vct_rhs = vec_madd(vct_w,vct_rhoz,vct_rhs)
26 ! write result from register into cache:
27 call vec_st(vct_rhs, 0, rhs(1,j,k))
28 ...
29 end do !j
30 end do !k
31 end do !e

Code example 4: Like code example 2 rewritten with
vector intrinsics (used in versions G, H and I)

To ensure this we need to synchronize all threads by using
an OpenMP barrier after each element computation. These
barriers slow down createrhs by less than 10% (version
I). Nevertheless we obtain in the case of the baroclinic
instability a noticeable improvement of the runtime of the
entire timeloop due to the reduced amount of work for
the IMEX corrections in the vertical direction. We obtained
the best performance by using 4 OpenMP threads per MPI
process (2, 8, 16 and 64 OpenMP threads per MPI process
were slower).

D. Next Steps

Our measurements show that our final version I achieves
an excellent level of vectorization (98.6% of all floating
point operations are vectorized). The main weakness of our
code is the very low percentage of floating point instructions
among all instructions and the fairly high number of loads
that hit L1P buffer and L2 cache. Optimal would be if
the prefetcher could bring all data into L1 cache before
it is needed. We tried different prefetching strategies and
handwritten prefetching but could not improve the perfor-
mance compared to the default strategy. These issues could
be avoided by merging the different parts of our code into
one loop over all the elements and by rearranging the data

vector intrinsics (here for BG/Q)

 1.0s

 98.6% vector

 operations
measurements: spectral element model NUMA, NPS

GPU (Graphics Processing Unit)

• small number of instructions => requires host CPU
• GPU/CPU interface (PCIe up to 16GB/sec, NVLINK

up to 300GB/sec between GPUs in same node)
• more energy efficient than CPUs
• high performance GPUs today mainly supplied by

NVIDIA
• lots of cores share one control unit
• very little memory inside the GPU

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step
• contiguous memory access
• try to fit data into cache
• make good use of vectorisation

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

How good are we?

Hardware performance counters

• set of special-purpose hardware
registers to store counts of hardware-
related activities

• can help in spotting the application
bottlenecks

• allow for low-level performance analysis
and tuning, though implementation may
be somehow difficult

• tools: PAPI, VTUNE, HPCToolkit, ...

Roofline plot

operational intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s p

er
 n

od
e

100

101

102

103

attainable timeloop createrhs

9.8⨉5.5⨉

arithmetic intensity (Flops/Byte)

blue:
entire

timeloop

red: main
computational

kernel
pe

ak
 ba

nd
widt

h

(ST
REA

M)

peak GFlops
(LINPACK)

G
Fl

op
s/

s
pe

r
no

de

data points:
different

optimization
stages

theoretical
optimum

measurements: spectral element model NUMA, NPS

Strong scaling efficiency

number of threads #106
0 0.5 1 1.5 2 2.5 3 3.5 4

m
od

el
 d

ay
s

pe
r w

al
lc

lo
ck

 d
ay

0

50

100

150

200

250

300

350

400

450
baroclinic instability, p=3, 3.0km horizontal resolution

measurements: spectral element model NUMA, NPS

3.14M threads

99.1%

strong scaling
efficiency

strong scaling: fixed total
amount of work

weak scaling: fixed amount of
work per processor

Create performance model

real, dimension(N,M) :: a,b,c
integer :: i,j,N,M
do timestep=1,nstep
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j) * c(i,j)
end do
end do
end do

example code:

variable bits per
entry size #read per

step
#write per

step
total bits

read
total bits
written

a 64 N*M 1 1 6.4E+12 6.4E+12
b 64 N*M 1 0 6.4E+12 0E+00
c 64 N*M 1 0 6.4E+12 0E+00

sum in bits 1.92E+13 6.4E+12
sum in GB 2400 800

intensity 6.25 runtime in
seconds 160.0

memory:

function operations per step

main 2*N*M 2E+11
total GFlops for

all steps 20000

runtime 100.0

floating point operations:

parameter value

N 1E+04
M 1E+05

nstep 100
GB/s 20

GFlops/s 200

parameters:

Create performance model

real, dimension(N,M) :: a,b,c
integer :: i,j,N,M
do timestep=1,nstep
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j) * c(i,j)
end do
end do
end do

example code:

variable bits per
entry size #read per

step
#write per

step
total bits

read
total bits
written

a 64 N*M 1 1 6.4E+12 6.4E+12
b 64 N*M 1 0 6.4E+12 0E+00
c 64 N*M 1 0 6.4E+12 0E+00

sum in bits 1.92E+13 6.4E+12
sum in GB 2400 800

intensity 6.25 runtime in
seconds 160.0

memory:

function operations per step

main 2*N*M 2E+11
total GFlops for

all steps 20000

runtime 100.0

floating point operations:

parameter value

N 1E+04
M 1E+05

nstep 100
GB/s 20

GFlops/s 200

parameters:

operational intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s p

er
 n

od
e

100

101

102

103

Create performance model

real, dimension(N,M) :: a,b,c
integer :: i,j,N,M
do timestep=1,nstep
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j) * c(i,j)
end do
end do
end do

example code:

variable bits per
entry size #read per

step
#write per

step
total bits

read
total bits
written

a 64 N*M 1 1 6.4E+12 6.4E+12
b 64 N*M 1 0 6.4E+12 0E+00
c 64 N*M 1 0 6.4E+12 0E+00

sum in bits 1.92E+13 6.4E+12
sum in GB 2400 800

intensity 6.25 runtime in
seconds 160.0

memory:

function operations per step

main 2*N*M 2E+11
total GFlops for

all steps 20000

runtime 100.0

floating point operations:

parameter value

N 1E+04
M 1E+05

nstep 100
GB/s 20

GFlops/s 200

parameters:

next step: distinguish between worst case
(no data already in cache) and best case
(previously used data is still in cache)

operational intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s p

er
 n

od
e

100

101

102

103

Create performance model

real, dimension(N,M) :: a,b,c
integer :: i,j,N,M
do timestep=1,nstep
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j) * c(i,j)
end do
end do
end do

example code:

variable bits per
entry size #read per

step
#write per

step
total bits

read
total bits
written

a 64 N*M 1 1 6.4E+12 6.4E+12
b 64 N*M 0 0 0E+00 0E+00
c 64 N*M 0 0 0E+00 0E+00

sum in bits 6.4E+12 6.4E+12
sum in GB 800 800

intensity 12.5 runtime in
seconds 80.0

memory:

parameter value

N 1E+04
M 1E+05

nstep 100
GB/s 20

GFlops/s 200

function operations per step

main 2*N*M 2E+11
total GFlops for

all steps 20000

runtime 100.0

floating point operations:parameters:

next step: distinguish between worst case
(no data already in cache) and best case
(previously used data is still in cache)

Create performance model

real, dimension(N,M) :: a,b,c
integer :: i,j,N,M
do timestep=1,nstep
do j=1,M
do i=1,N
a(i,j) = a(i,j) + b(i,j) * c(i,j)
end do
end do
end do

example code:

variable bits per
entry size #read per

step
#write per

step
total bits

read
total bits
written

a 64 N*M 1 1 6.4E+12 6.4E+12
b 64 N*M 0 0 0E+00 0E+00
c 64 N*M 0 0 0E+00 0E+00

sum in bits 6.4E+12 6.4E+12
sum in GB 800 800

intensity 12.5 runtime in
seconds 80.0

memory:

parameter value

N 1E+04
M 1E+05

nstep 100
GB/s 20

GFlops/s 200

function operations per step

main 2*N*M 2E+11
total GFlops for

all steps 20000

runtime 100.0

floating point operations:parameters:

operational intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s p

er
 n

od
e

100

101

102

103

next step: distinguish between worst case
(no data already in cache) and best case
(previously used data is still in cache)

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step
• contiguous memory access
• try to fit data into cache
• make good use of vectorisation
• compare performance with expectations

Recommendations • try if using libraries is fast enough
• try to use compiler optimisation (be careful!)
• avoid unnecessary computation and

communication
• give each thread as much work as possible
• let the threads do work that does not affect others
• overlap computation and communication
• use data only once per time-step
• contiguous memory access
• try to fit data into cache
• make good use of vectorisation
• compare performance with expectations

open question
How to find right
compromise between
performance and readability,
portability, maintainability?

• Images on slide 2 used under license from shutterstock.com

Image credits

http://shutterstock.com

