Funded by the : M
) Co-ordinated by ===
European Union w

[[N R
HEEEE EEaaew
B B BEEEEREEEEES
o] BEEEEET " EEOEN/

-
g .
HE EEEEEEEEN dAEREN
r
= AENEEEEEED, AdAEEEEEEN

ESCAP

Max-Planck-Institut .
fiir Meteorologie U MeteoSwiss (
D cmce Bull

sui Cambiamenti Climatici atos technologies

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

£ ECMWF <=> KRz

4 M Loughborough
7 University

M e

RMI

Funded by the : n
: Co-ordinated by ===
European Union w

Massively Parallel Computing
@3gm for NWP and climate

— 0000 000

Andreas Mueller

KLIMARTCHINTIENTRUM

RMI

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

Py, @ Max-Planck-Institut . Barcelona Loughborough D) X cmce Buu
-t ECMWF DKRZ fur Meteorologie MeteoSwiss Center Cea University POLITECNICO M Contro Buro-Medierraneo
DEUTSCHES Coantrd N 00 SerComputacson sul Camnbiamenti Climatici atos t‘f.‘(.l’]n()lf)(;)(."%

Overview « Why do scientists need to know so
much about computer science?

 What do we need to be aware of to
write efficient code?

* How good are we?

- %L ughliorn gh .m. ! Qcmoc Buu
e RMI S

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 re vation programme under grant agreement No 800897

Funded by the : n
- Co-ordinated by mmm
European Union w

Why do we as scientists need to know so
much about computer science?

l e Max-Planck-Institut Sarcelons vting Loughborough
—wECMWF ®055E i Rleasiisse UMeteoSmss (C Conter University rouncmco

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

¢mec Bull

sul Camblamenti Cimatici 2105 technologies

Funded by the

Why do we as scientists need to KnOw SO erepeanunion -
much about computer science?

*Excuse 1: let the computer scientists take care of it

*Response: computer scientists cannot do everything because
they do not know about different numerical methods

*Excuse 2: just buy a faster computer if the code is not fast enough

*Response: we (and the environment) cannot afford wasting
that much energy!

computer electricity cost per year
ECMWEF ~3 million £

fastest current supercomputer ~15 million $

next generation (exascale) ~20 million S

Funded by the
European Union

Supercomputer/Cluster

nodes

network

Node

memory (DRAM) CPU

central processing unit;
CPU CPU CPU dois one instruction like
c=a+tb per clock cycle

Funded by the
European Union

CPU clock rate over time

10

1 GHz

0.1.7

0.01 o at

0.001

0.0001
1971 1976 1981 1986 1991 1996 2001 2006 2011 2016

source: James Reinders, Intel Xeon Phi

Number of cores per chip over time -

512

256
Threads

. Cores
128

i o= ¥
32 =

16 -

116 B N FEEE 5 i
1971 1976 1981 1986 1991 1996 2001 2006 2011

2016

source: James Reinders, Intel Xeon Phi

Funded by the
European Union

http://top500.org

Rmax Rpeak Power
Rank System Cores (TFlop/s) (TFlop/s) (kW)

1 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 2,397,824 143,500.0 200,794.9 9,783
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/SC/0Oak Ridge National Laboratory
United States

2 Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA 1,572,480 94,640.0 125,712.0 7,438
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL
United States

3 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 10,649,600 93,014.6 125,435.9 15,371
Sunway, NRCPC
National Supercomputing Center in Wuxi

China

A Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH 4,981,760 61,444.5 100,678.7 18,482
Express-2, Matrix-2000, NUDT .

National Super Computer Center in Guangzhou O
China ®
5 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, 387,872 21,230.0 soo
NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS) The List.

Switzerland

L Tewermidvzs Nrav VO/N Varnrm CE 2922009 1L D 2N 1 na4+Al VAamnrm DR 595N LON O70 N7 "N 150 77 1 /741 9 7 R70

finer resolution

X 10 in each
direction and time
=10,000

What comes next?

computing/energy
resources

1,000,00¢(

add more processes (e.g.

chemistry)
x 10

more ensemble
members

x 10

Funded by the
European Union

Funded by the
European Union

Computing at ECMWF

1000
Historic Growth 7
100

%

<

g

10)

~J

~J

~Jl

(6,

0.1

Sustained Teraflops

0.01

0.001

0.0001

1E-05 ’
1978 1983 1988 1993 1998 2003 2008 2013 2018

Funded by the
European Union

Sustained Exaflop in 2033 ?

1000000

100000

10000

1000

100

10

SLL £19MOd INGI

Sustained Teraflops

0.1

0.01

0.001

0.0001

1E-05

— o | | | |
1978 > 1983 » 1988 1993 1998 2003 2008 2013 2018 2023 2028 2033 2038

Funded by the : M
) Co-ordinated by ===
European Union w

What do we need to be aware of
to write efficient code?

“MM

Loughborough
Cea University

£ ECMWF <=~ Dkrz

KLUIMARECHENIENTRUM

Cav 0 NSO 00 SLparComputacson

J IR\ (0X ® ¢Mcc Bull
atos technologies

Max-Planck-Institut
far Meteorologie 9 MetQOSWlSS (C
RMI

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

Recommendations -

::;,." EE::::a:VJ: fon
ESCAPEZ Libraries -

* there are well optimised libraries
for many tasks

 BLAS for vector-matrix product or
matrix-matrix product (if matrices
are large)

Intel’

Math Kernel
Library

:
4
-
3
3
:

» Lapack for matrix factorisation (e.g.
LU decomposition)

e some hardware vendors have
special math libraries, e.g. MKL by
Intel

* there are some cases in which
libraries are fairly slow (e.g. BLAS
with very small matrices)

Co-ordinated by —c EC MWF

Recommendations * try if using libraries is fast enough

COmpiler Optimisation B -

» compilers have optimisation flag -On (O0: no optimisation, O3:
strong compiler optimisation)

* O3 is usually much faster than OZ2, but it can also be slower
than O2

* O3 can produce completely wrong results!
* you can use different compiler flags for different files

o different compiler versions can have very different
performance

» check compiler messages (Intel: ifort -O2 -qopt-report=2
code.f90 -o program)

* make sure that your code runs correctly with different
compilers

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

Funded by the
European Union

Supercomputer/Cluster

nodes

network

Node -
Bottlenecks

memory (DRAM) |+ network (connection

between nodes)
e connection between
CPU CPU CPU | DRAM and processor i

e —

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

« avoid unnecessary computation and
communication

Shared memory: OpenMP -

without OpenMP:
* many threads of a process run on a

single node real, dimension(N) :: a,b
- all threads can access the same data Leegsr N
 data may be physically distributed, a(i) = a(i) + b(i)

but logically shared end do

with OpenMP:

real, dimension(N) :: a,b
1nteger :: 1,N

1$omp parallel do private(i)
do 1=1,N

a(1) = a(1) + b(1)

end do

l$omp end parallel do

faster for bigger codes:

real, dimension(N) :: a,b

integer :: 1, N, 1Start, 1End,
myid, numthreads

1$omp parallel private(i,iStart,iEnd)
myid = omp_get_thread_num()
numthreads = omp_get_num_threads()
1Start = ...

1End = ...

do 1=1Start,1End

a(1) = a(1) + b(1)

end do

l$omp end parallel

Funded by the
European Union

Shared memory:. OpenMP

without OpenMP:

real, dimension(N) :: a,b
integer :: 1,N

do 1=1,N

a(1) = a(1) + b(1)

end do

with OpenMP:

real, dimension(N) :: a,b
integer :: 1,N

1$omp parallel do private(i)
do 1=1,N

a(1) = a(1) + b(1)

end do

l$omp end parallel do

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

* avoid unnecessary computation and
communication
» give each thread as much work as possible

ESCAPEZ it -
SCAPES Shared memory: OpenMP

| Example 2: race conditions
without OpenMP:

real, dimension(N) :: a
real :: sum
integer :: 1,N
do 1=1,N

sum = sum + a(i)
end do
with OpenMP (wrong!): working, but slow: faster:

real, dimension(N) :: a real, dimension(N) :: a real, dimension(N) :: a
real :: sum real :: sum real :: sum

integer :: 1i,N 1$omp parallel do private(i) 1$omp parallel do private(i
1$omp parallel do private(i) do i=1,N reduction (+: sum)

do i=1,N l$omp atomic do i=1,N

sum = sum + a(i) sum = sum + a(i) sum = sum + a(i)

end do end do end do

l$Somp end parallel do l$Somp end parallel do l$Somp end parallel do

Funded by the
Shared memory: OpenMP o -

Example 2: race conditions

best: arrange work such that different threads work on different data

example: spectral
element, start with
orange (non-
adjacent) elements

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

» avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect
others

ESCAPE@ Distributed memory: MP! -

* many processes run on multiple integer :: len, destination, tag, nreq
nodes comm = mpi_comm_world

call mpi_init(ierr)

call mpi_comm_rank(comm, myid, 1ierr)
call mpi_comm_size(comm, numproc, ierr)
nreq = 0

* process can access only data on the
node it Is running

* use communication library MP|
(Message Passing Interface) to access
data on other nodes

do 1=1,N ! loop over processors with which we
want to communicate
destination = ...
nreq = nreq + 1
call mpi_irecv(recvdata, len, mpi_real,
destination, tag, comm, request(nreq), 1ierr)
nreq = nreq + 1
call mpi_isend(senddata, len, mpi_real,
destination, tag, comm, request(nreq), 1ierr)
end do
. do some work ...
call mpi_waitall(nreq, request, status, ierr)
call mpi_finalize(ierr)

Overlap communication and computation

« Example: grid point method with
only next neighbour
communication:

e compute values along
processor boundaries first
(orange) and send result to
neighbours

* compute interior points while
the data is on its way (green)

* try to reduce the physical

distance that data needs to travel
(difficult)

Funded by the
Eurcpean Union

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

» avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

bad example:

real, dimension(N) :: a,b
real :: sum

integer :: 1,N

sum = 0.0

a=0.0

b = 0.0

do 1=1,N

b(1) =1

end do

do 1=1,N

a(i1) = a(1) + b(1)
end do

do 1=1,N

sum = sum + a(1)
end do

print*, sum

Funded by the
European Unicon

Use data once per time-step

g00d:

real, dimension(N) :: a,b
real :: sum

integer :: 1,N

sum = 0.0

do 1=1,N

a(1) = 0.0

b(1) =1

a(1) = a(1) + b(1)
sum = sum + a(1)
end do

print*,sum

Recommendations

* try if using libraries is fast enough

* try to use compiler optimisation (be careful!)

» avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

Funded by the

E S C A] European Union
i Contiguous memory access
Fortran (column major order):
real, dimension(N,M) :: a,b
memory integer :: 1,j,N,M

JIT T T T T TTITTITITTITTITT o

do 1=1,N
a(i,j) — G(i,j) + b(iaj)

. l fast 1n
* cache line end do
(often |28 Bytes) end do

dex should be 1

EENEEENNEEENEEEE C (row major order

int 1,3,N,M;

for (i=0; i

. . . . for (J=0;
store data in the order in which you need it a[i]1[3] =
and use it in this order! // fast i

¥
¥

<N; 1++) {

J<M; J++) A
ali][3] + b[1][]]
ndex should be j

Recommendations

* try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

avoid unnecessary computation and
communication

give each thread as much work as possible

let the threads do work that does not affect others
overlap computation and communication

use data only once per time-step

contiguous memory access

Funded by the
European Union

Supercomputer/Cluster

nodes

network

Node

memory (DRAM) CPU

central processing unit;
CPU CPU CPU dois one instruction like
c=a+tb per clock cycle

Funded by the
European Union

Memory hierarchy inside one node

Socket 1 Socket 2

Registers/Buffers
Cn i “n
Load Buffer - ~1 cycle <1ns . .

Store Buffer

- -

~3 cycles ~1ns

~12 cycles ~3ns

L3 ~38 cycles ~12ns L3
i— e

QP| ~40ns

it

=i

~Bons

Funded by the
European Union

Cache

CPU
. Increasing distance from CPU = larger access time
Level 1 //’ \\\
Example:
Level 2
Level 3 L1: 32 kB, latency 3 cycles

L2: 256 kB, latency 10 cycles

L3: 8MB, latency 40 cycles

DRAM: 16GB, latency 200 cycles
Level n \ DISK: 1TB, latency 1.000.000 cycles

e ————————— \ /

Size of memory

4 A

Cache hit — data found in cache

Cache miss — data not found in cache, thus must be copied from lower memory level
Capacity miss — cache runs out of space for new data

Conflict miss — more that one item is mapped to the same location in cache

IFS: divide work into blocks
with length NPROMA

Funded by the
Eurcpean Union

SECONDS

550 -

500

450 -
400 -
350 -
300 -
250 -
200 -

RAPS9 FC T799L91
192 tasks x 4 threads

E——

10 100
Grid Space blocking (NPROMA)

1000

Recommendations

* try if using libraries is fast enough

* try to use compiler optimisation (be careful!)

» avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

e contiguous memory access

* try to fit data into cache

Funded by the
European Union

Supercomputer/Cluster

nodes

network

Node -
Bottlenecks

memory (DRAM) |+ network (connection

between nodes)
e connection between
CPU CPU CPU | DRAM and processor i

e —

ESCAPE@Z Fast and slow operations o -

* |n terms of cost
» Fast and inexpensive: add, multiply, sub, fma (fused multiply add)

 Medium: divide, modulus, sqrt
» Slow: power, trigonometric functions

* try linear algebra (BLAS, LAPACK) and math libraries (Intel MKL)

Vectorisation B

memory

PP rd

Funded by the
i . . European Union
Vectorisation

memory

TP PPl

[T * [T e
register

® (BG/Q)

UNIN\

~N O\ D &

AN D B W =

Vectorisation

Initial version:

real

rho, rho_x, rho_vy, rho_z, u, v,

w, rhs

do e=1,num_elem ! loop through all elements
1, num_points_e ! loop through all points of

do 1=
the

rh

element e

' compute derivatives rho_x, rho_y,

S = u*xrho_x + vxrho_y + wxrho_z

end do !1

end do !

e

|

rho =z

optimised for compiler vectorisation:

real, dimension (num_points_e) :: rho, rho_x,

rho z

, u, v, w, rhs

do e=1,num_elem ! loop through all elements

|
rhs =
end do !

compute derivatives like rho_x,
uxrho_x + vxrho_y + wxrho_z +
e

rho_v,

rho_v, &

rho z

Funded by the
European Union

W I

N O\ O &~

AN D B W =

Funded by the
European Unicon

Vectorisation

Initial version:

real :: rho, rho_x, rho_vy, rho_z, u, v, w, rhs
do e=1,num_elem ! loop through all elements
do 1=1,num _points_e ! loop through all points of
the element e
' compute derivatives rho_x, rho_y, rho_z P

rhs = u*xrho_x + v*rho_y + wxrho_z + ... yg},f
end do !i ra 945
end do le ‘44% Vector
X operat'\ons ,
optimised for compiler vectorisation: R S

real, dimension (num_points_e) :: rho, rho_x, rho_vy, &
rho z, u, v, w, rhs

do e=1,num_elem ! loop through all elements l_ak“”ﬁ'
' compute derivatives like rho_x, rho_y, rho__/V“ fZ,\S
rhs = uxrho_x + vxrho_y + wxrho z + ... r4 5 tor
end do !'e 4 739A vecC

measurements: spectral element model NUMA, NPS Ny S

Funded by the
European Union

vector intrinsics (here for BG/Q)

Il real, dimension(4,4,4) :: rho, rho_x, rho_vy, &

2 rho_z, u, v, w, Uu_X, V._y, W_z, rhs

3 'TBM* align (32, rho, rho_x, rho_y, rho_z, u, v, w,
u_xXx, VvV_y, W_Z, rhs)

4 ' declare variables representing reglsters: (each
contains four double precision floating point
numbers)

5 wvector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz

6 vector(real(8)) wvct_u, vct_ v, vct_w, vct _rhs

7 if (iand(loc(rho), z’"1F’) .ne. 0) stop ’'rho is not
aligned’

3 ' check alignment of other variables

9 do e=1,num_elem ! loop through all elements

10 do k=1,4 ! loop over points in z-direction

11 do j=1,4 ! loop over points in y-direction

12 | compute derivatives rho_x,

13 | load always four floating point numbers:

14 vct_u = vec_1d (0, u(l, j,k))

15 vct_v = vec_1d(0, v(1,3,k))

16 vct_w = vec_1d(0, w(l,j,k))

17 vct_rhox = vec_1d (0, rho_x(1,3,k))

18 vct_rhoy = vec_1d(0, rho_v (1, j,k))

19 vct_rhoz = vec_1d (0, rho_z (1, 3j,k))

20 ' rhs = u*xrho x

SO 00N N AW

N O\ U & W N =

28
29
30
31

vector intrinsics (here for BG/Q)

-

.

-t

' compute derivatives rho_x,

' 1load always four floating point numbers:

vct_u = vec_1d(0, u(l, 3,k))

vct_v = vec_1d(0, v (1, 3,k))

vct_w = vec_1d(0, w(l, 3,k))

vct_rhox = vec_1d(0, rho_x(1,3],k))
vct_rhoy = vec_1d(0, rho_v (1, j,k))
vct_rhoz = vec_1d(0, rho_z (1, j,k))

' rhs = u*xrho_x

vct _rhs = vec_mul (vct_u,vct _rhox)

' rhs = rhs + vxrho_y

vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
' rhs = rhs + wxrho 7z

vct _rhs = vec_madd(vct_w,vct _rhoz,vct _rhs)
' write

call vec_ st (vct _rhs,

end do !

end do 'k
end do 'e

0,

rhs (1, 3,Kk))

measurements: spectral element model NUMA, NPS

result from register into cache:

Funded by the
European Unicon

Funded by the
European Union

GPU (Graphics Processing Unit)

* small number of instructions => requires host CPU

 GPU/CPU interface (PCle up to 16GB/sec, NVLINK
up to 300GB/sec between GPUs in same node)

* more energy efficient than CPUs

FEEREREE

* high performance GPUs today mainly supplied by
NVIDIA GPU

e |ots of cores share one control unit

 very little memory inside the GPU Control ALU ALU

ALU ALU

CPU

Recommendations

* try if using libraries is fast enough

* try to use compiler optimisation (be careful!)

» avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

e contiguous memory access

* try to fit data into cache

* make good use of vectorisation

Funded by the : n
) Co-ordinated by ===
European Union w

How good are we”?

l aa) Max-Planck-Institut . Barcelona Loughborough
L ECMWF <= 0krz s &) MeteoSwiss (C serees MEZBN Q) University

KLIMARTCHENTIENTRUM

sul Camnblaments Clinnatici atos(echng[og,eg

RMI

The ESCAPE-2 project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 800897

set of special-purpose hardware
registers to store counts of hardware-
related activities

can help in spotting the application
bottlenecks

allow for low-level performance analysis
and tuning, though implementation may
be somehow difficult

tools: PAPI, VTUNE, HPCToolkit, ...

Funded by the
European Union

Hardware performance counters

@G oeis

= up 4 &0 > 5 =0O|pcairath| =0

Time Range: [0.0s ,0.474s] Rank Range: [36,48] Cross Hair: (0.214s, 43)

L

11l

N
N
N N
N

N
N
N

N
N
N
N N

N

NS TR0 T A A A ;

9

M main

M MAIN__

M pmpi_bcast_

M PMPI_Bcast

M intra_shmem_Bce
M intra_Bcast

M PMPI_Recv

B MPID_RecvDatat
W MPID_PSM_Recv(
M psmi_timer_cance
M psmi_timer_cance
W psmi_am_reqq_dr:
M psmi_epaddr_kcoy
M psmi_am_mq_han
M psmi_timer_cance

M psmi_mg_mtucpy
M ipath_dwordcpy

¥ Depth View ’[l Summary View‘

0
m ,

Mini Map

H ‘ 7M of 38M ‘ﬁﬁ

- i Funded by the
Roofline plot

10° 1 _
— —attainable O timeloop A createrhs|
peak GFlops - blue
(LINPACK) entire
o / timeloop
B 10%} :
- 3] .
. : red: main
o computational
3 kernel
O
™
O 107} data points:
g different
@ | optimization
NUMA3 stages
o 10 10’ 10°

arithmetic intensity (Flops/Byte)

measurements: spectral element model NUMA, NPS

ESCA

model days per wallclock day

400 |
350 |

300 |

N
a1
o

N
)
o

—h
o)
o

100 -

Strong scaling efficiency

Funded by the
European Union

baroclinic instability, p=3, 3.0km horizontal resolution

50 |

IIIIII
rr <

strong scaling: fixed total R
amount of work 7 i _
weak scaling: fixed amount of g @ N
work per processor e num@ :

P> 99.1%

) strong scaling
» efficiency -
’ g 3.14M threads i

. I I I L I I P L

0.5 1 1.5 2 2.5 3 3.5 4

number of threads

measurements: spectral element model NUMA, NPS

Funded by the
Create performance model o -

example code:

real, dimension(N,M) :: a,b,cC parameters: floating point operations:
integer :: 1,J,N,M

do timestep=1,nstep operations per step
do j=1,M S 1E+04 "
do izl N M BEXGEE main R 2E+11
a(i,j) = aCi,j) + bG,j) * <G, [Nl total GFlops for 50000
end do Il ol steps
end do GFlops/s WPIUNM runtme | | 100.0 _
end do
memory:.
: bits per #read per | #write per | total bits | total bits
variable)
entry step step read written
o 64 N*M w 1 6.4E+12 6.4E+12
O 64 N*M w 0 6.4E+12 OE+00
64 N*M w 0 6.4E+12 OE+00
suminbits| | | | [1.92E+13 | 6.4E+12

suminGB| | | 00} | 2400 | 800

mtensity | 625 | | [Tt | re00
seconds

Funded by the
Eurcpean Union

Create performance model

example code| 10’

real, dimensi |] S o floating point operations:
1nteger D 1, | 3 : : ﬂ
do j=1,M W0°F e o
do i=1,N ﬂ,é ' RN R = : 2*N*M 2E+11
R = o total GFlops for
oCD - al e e _
end do g OOl runtme | | 100.0
1

end do 107t

#read per | #write per | total bits | total bits
step step read written
2

; N*M 6.4E+ 6.4E+12
0 0 — 1 Ty N*M w o 6.4E+12 0E+00
I 6.4E+12 0E+00

Operatlonal intensity (Flops/Bytes)

—m—___
suminGB| | | 00} | 2400 | 800

---m
seconds

example code

real, dimensti

1nteger coo1,

do timestep= 1'

do j=1,M
do 1—1,N
aci,j) =
end do

end do

end do

next step: distinguish between worst case
(no data already in cache) and best case

Create performance model

Funded by the
Eurcpean Union

GFlops per node

107

1():‘

10:‘

10

100

W 0
operational intensity (Flops/Bytes)

floating point operations:
operations per step

2*N*M 2E+11

D4
05

0 total GFlops for 20000

b all steps

M rime || 1000 _

#read per | #write per | total bits | total bits
step step read written

10° I

(previously used data is still in cache)

runtime in
intensity
seconds

N*M 6.4E+12 6.4E+12
N*M W 6.4E+12 OE+00
N*M 6.4E+12 OE+00

Funded by the
Create performance model -

example code:

real, dimension(N,M) :: a,b,cC parameters: floating point operations:

integer :: 1,J,N,M
parameter | value function operations per step

do timestep=1,nstep

do j=1,M o~
b
a(i,3) = a(i,j) + bCi,j) * <(i,) 100 total”GFlops for 50000
end do 20 all steps
end do GFlops/s [EIVNMl runtime | | 1000 _

end do

memory:

bits per #read per | #write per | total bits | total bits
variable
entry step step read written

N*M 6.4E+12 6.4E+12
N“M OE+00 OE+00
_ 4 N*M _ OE+00 OE+00

suminGB | | | [| 80 | 800

T R = BT
seconds

next step: distinguish between worst case
(no data already in cache) and best case
(previously used data is still in cache)

Funded by the
Eurcpean Union

Create performance model

—

example code| 0%

real, dimensi |] . o floating point operations:
1nteger co1,
do timestep=1 function operations per step
do j=1,M | 102})4 i

do i=1,N 3 E5 2*N*M 2E+11

s 5 total GFlops for

d(l =)

2D -l e | | o000
A B i | w0
end do L

#read per | #write per | total bits | total bits
step step read written

N*M 6.4E+12 6.4E+12
10;)0_1 - '1'(;0 - '1'(;1 P N*M 0 OE+00 OE+00
operational intensity (Flops/Bytes) I _ OE+00 OE+Q0

suminGB| | | 0} | 80 | 80

T R = B T
seconds

next step: distinguish between worst case
(no data already in cache) and best case
(previously used data is still in cache)

Recommendations

* try if using libraries is fast enough

* try to use compiler optimisation (be careful!)

* avoid unnecessary computation and
communication

 give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

e contiguous memory access

» try to fit data into cache

* make good use of vectorisation

 compare performance with expectations

Co-ordinated by —c Ec MWF

Recommendations * try if using libraries is fast enough
* try to use compiler optimisation (be careful!)

* avold unnecessary computation and
communication
 give each thread as much work as possible
* let the threads do work that does not affect others
open question - overlap computation and communication
o * use data only once per time-step
' ngptr%msderﬂtveen » contiguous memory access
performance and readability, * try to fit data into cache
portability, maintainability? | e make gOOd use of vectorisation
T — « compare performance with expectations

Funded by the
European Unicon

* Images on slide 2 used under license from shutterstock.com

http://shutterstock.com

