Assimilation Algorithms
 Lecture 1: Basic Concepts

Sébastien Massart and Mike Fisher

ECMWF
11 March 2019

※ECMWF

Outline

(1) History and Terminology

2 Elementary Statistics - The Scalar Analysis Problem
(3) Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

Outline

(9) History and Terminology

(2) Elementary Statistics - The Scalar Analysis Problem

(3) Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

Interpreting the weather situation

Definition

Analysis: The process of approximating the true state of a (geo-)physical system at a given time using the available knowledge.

X First hand analysis of synoptic observations in 1850 by LeVerrier and Fitzroy.

X Polynomial Interpolation in the 1950s by Panofsky with the developments of computers

The black dots denote the data points, while the red curve shows the polynomial interpolation.

Background

X An important step forward was made by Gilchrist and Cressman (1954), who introduced the idea of using a previous numerical forecast to provide a preliminary estimate of the analysis.

X This prior estimate was called the background.

Background

X An important step forward was made by Gilchrist and Cressman (1954), who introduced the idea of using a previous numerical forecast to provide a preliminary estimate of the analysis.

X This prior estimate was called the background.

Optimal interpolation

X Bergthorsson and Döös (1955) took the idea of using a background field a step further by casting the analysis problem in terms of increments which were added to the background.

Optimal interpolation

X Bergthorsson and Döös (1955) took the idea of using a background field a step further by casting the analysis problem in terms of increments which were added to the background.

X The increments were weighted linear combinations of nearby observation increments (observation minus background), with the weights determined statistically.

Optimal interpolation

X Bergthorsson and Döös (1955) took the idea of using a background field a step further by casting the analysis problem in terms of increments which were added to the background.

\boldsymbol{x} The increments were weighted linear combinations of nearby observation increments (observation minus background), with the weights determined statistically.
x This idea of statistical combination of background and synoptic observations led ultimately to Optimal Interpolation.
X The use of statistics to merge model fields with observations is fundamental to all current methods of analysis.

Data Assimilation

X An important change of emphasis happened in the early 1970s with the introduction of primitive-equation models.
X Primitive equation models support inertia-gravity waves. This makes them much more fussy about their initial conditions than the filtered models that had been used hitherto.
x The analysis procedure became much more intimately linked with the model. The analysis had to produce an initial state that respected the model's dynamical balances.
X Unbalanced increments from the analysis procedure would be rejected as a result of geostrophic adjustment.
X Initialisation techniques (which suppress inertia-gravity waves) became important.
※ECMWF

Data Assimilation

The idea that the analysis procedure must present observational information to the model in a way in which it can be absorbed (i.e. not rejected by geostrophic adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
\Rightarrow Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.
\Rightarrow The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.
\Rightarrow The aliens in the science-fiction film wanted to assimilate human beings into their own race.

Data Assimilation

The idea that the analysis procedure must present observational information to the model in a way in which it can be absorbed (i.e. not rejected by geostrophic adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
\Rightarrow Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.
\Rightarrow The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.
\Rightarrow The aliens in the science-fiction film wanted to assimilate human beings into their own race.
\Rightarrow The process by which the Borg integrate beings and cultures into their collective.

Data Assimilation

The idea that the analysis procedure must present observational information to the model in a way in which it can be absorbed (i.e. not rejected by geostrophic adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
\Rightarrow Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.
\Rightarrow The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.
\Rightarrow The aliens in the science-fiction film wanted to assimilate human beings into their own race.
\Rightarrow The process by which the Borg integrate beings and cultures into their collective.

Data Assimilation

The idea that the analysis procedure must present observational information to the model in a way in which it can be absorbed (i.e. not rejected by geostrophic adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
\Rightarrow Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.
\Rightarrow The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.
\Rightarrow The aliens in the science-fiction film wanted to assimilate human beings into their own race.
\Rightarrow The process by which the Borg integrate beings and cultures into their collective.

Our definition

X The process of objectively adapting the model state to observations in a statistically optimal way taking into account model and observation errors

Data Assimilation

X A final impetus towards the modern concept of data assimilation came from the increasing availability of asynoptic observations from satellite instruments.
X It was no longer sufficient to think of the analysis purely in terms of spatial interpolation of contemporaneous observations.
X The time dimension became important, and the model dynamics assumed the role of propagating observational information in time to allow a synoptic view of the state of the system to be generated from asynoptic data.

X Example of satellite data coverage in 6 hours (AMSU-A data).

Outline

(1) History and Terminology

2) Elementary Statistics - The Scalar Analysis Problem
(3) Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

Elementary Statistics

Problem

Suppose we want to estimate the temperature of this room, given:
\times A prior estimate: T_{b}.
\Rightarrow E.g., room thermostat or assume we measured the temperature an hour ago, and we have some idea (i.e. a model) of how the temperature varies as a function of time, the number of people in the room, whether the windows are open, etc.
\times A thermometer: T_{0}.
x Denote the true temperature of the room by T_{t}.

Errors

X The errors in T_{b} and T_{o} are:

$$
\begin{aligned}
& \varepsilon_{b}=T_{b}-T_{t} \\
& \varepsilon_{o}=T_{o}-T_{t}
\end{aligned}
$$

$X \varepsilon_{b}$ and ε_{o} are random variables (or stochastic variables)

Elementary Statistics

Hypotheses

\mathbf{x} We will assume that the error statistics of T_{b} and T_{o} are known.

Possible values

Elementary Statistics

Hypotheses

\times We will assume that the error statistics of T_{b} and T_{o} are known.

x We will assume that T_{b} and T_{o} have been adjusted (bias corrected) so that their mean errors are zero:

$$
\overline{\varepsilon_{b}}=\overline{\varepsilon_{o}}=0 .
$$

X There is usually no reason for ε_{b} and ε_{o} to be connected in any way:

$$
\overline{\varepsilon_{o} \varepsilon_{b}}=0 .
$$

x The quantity $\overline{\varepsilon_{o} \varepsilon_{b}}$ represents the covariance between the error of our prior estimate and the error of our thermometer measurement.

Elementary Statistics

\mathbf{X} We estimate the temperature of the room as a linear combination of T_{b} and T_{o} :

$$
T_{a}=\alpha T_{o}+\beta T_{b}+\gamma
$$

Elementary Statistics

\mathbf{X} We estimate the temperature of the room as a linear combination of T_{b} and T_{o} :

$$
T_{a}=\alpha T_{o}+\beta T_{b}+\gamma
$$

\times Denote the error of our estimate as $\varepsilon_{a}=T_{a}-T_{t}$.
X We have:

$$
T_{a}=T_{t}+\varepsilon_{a}=\alpha\left(T_{t}+\varepsilon_{o}\right)+\beta\left(T_{t}+\varepsilon_{b}\right)+\gamma
$$

x Taking the mean and rearranging gives:

$$
\overline{\varepsilon_{a}}=(\alpha+\beta-1) T_{t}+\gamma
$$

X We want the estimate to be unbiased: $\overline{\varepsilon_{a}}=0$.
X Since this holds for any T_{t}, we must have
$\Rightarrow \gamma=0$, and
$\Rightarrow \alpha+\beta-1=0$.
\times I.e. $T_{a}=\alpha T_{o}+(1-\alpha) T_{b}$

Elementary Statistics

X The general Linear Unbiased Estimate is:

$$
T_{a}=\alpha T_{o}+(1-\alpha) T_{b}
$$

X Now consider the error of this estimate.
X Subtracting T_{t} from both sides of the equation gives

$$
\varepsilon_{a}=\alpha \varepsilon_{o}+(1-\alpha) \varepsilon_{b}
$$

Elementary Statistics

X The general Linear Unbiased Estimate is:

$$
T_{a}=\alpha T_{o}+(1-\alpha) T_{b}
$$

X Now consider the error of this estimate.
X Subtracting T_{t} from both sides of the equation gives

$$
\varepsilon_{a}=\alpha \varepsilon_{o}+(1-\alpha) \varepsilon_{b}
$$

x The variance of the estimate is:

$$
\overline{\varepsilon_{a}^{2}}=\alpha^{2} \overline{\varepsilon_{o}^{2}}+2 \alpha(1-\alpha) \overline{\varepsilon_{o} \varepsilon_{b}}+(1-\alpha)^{2} \overline{\varepsilon_{b}^{2}}
$$

\boldsymbol{x} With the previous hypothesis $\overline{\varepsilon_{o} \varepsilon_{b}}=0$:

$$
\overline{\varepsilon_{a}^{2}}=\alpha^{2} \overline{\varepsilon_{o}^{2}}+(1-\alpha)^{2} \overline{\varepsilon_{b}^{2}}
$$

Elementary Statistics

$$
\overline{\varepsilon_{a}^{2}}=\alpha^{2} \overline{\varepsilon_{o}^{2}}+(1-\alpha)^{2} \overline{\varepsilon_{b}^{2}}
$$

We can easily derive some properties of our estimate:

$$
\begin{aligned}
& x \frac{d \overline{\varepsilon_{a}^{2}}}{d \alpha}=2 \alpha \overline{\varepsilon_{o}^{2}}-2(1-\alpha) \overline{\varepsilon_{b}^{2}} \\
& \times \text { For } \alpha=0, \overline{\varepsilon_{a}^{2}}=\overline{\varepsilon_{b}^{2}} \text { and } \frac{d \overline{\varepsilon_{a}^{2}}}{d \alpha}=-2 \overline{\varepsilon_{b}^{2}}<0 \\
& \times \text { For } \alpha=1, \overline{\varepsilon_{a}^{2}}=\overline{\varepsilon_{o}^{2}} \text { and } \frac{d \varepsilon_{a}^{2}}{d \alpha}=2 \overline{\varepsilon_{o}^{2}}>0
\end{aligned}
$$

From this we can deduce:
\mathbf{x} For $0 \leq \alpha \leq 1, \overline{\varepsilon_{a}^{2}} \leq \max \left(\overline{\varepsilon_{b}^{2}}, \overline{\varepsilon_{o}^{2}}\right)$
x The minimum-variance estimate occurs for $\alpha \in(0,1)$.
X The minimum-variance estimate satisfies $\overline{\varepsilon_{a}^{2}}<\min \left(\overline{\varepsilon_{b}^{2}}, \overline{\varepsilon_{o}^{2}}\right)$, which means it is lower than the variance of each piece of information.

Elementary Statistics

The minimum-variance estimate occurs when

$$
\begin{aligned}
\frac{d \overline{\varepsilon_{a}^{2}}}{d \alpha} & =2 \alpha \overline{\varepsilon_{o}^{2}}-2(1-\alpha) \overline{\varepsilon_{b}^{2}}=0 \\
\Rightarrow \quad \alpha & =\frac{\overline{\varepsilon_{b}^{2}}}{\overline{\varepsilon_{b}^{2}}+\overline{\varepsilon_{o}^{2}}} .
\end{aligned}
$$

It is not difficult to show that the error variance of this minimum-variance estimate is:

$$
\frac{1}{\overline{\varepsilon_{a}^{2}}}=\frac{1}{\overline{\varepsilon_{b}^{2}}}+\frac{1}{\overline{\varepsilon_{0}^{2}}},
$$

and the analysis is:

$$
\frac{1}{\overline{\varepsilon_{a}^{2}}} T_{a}=\frac{1}{\overline{\varepsilon_{b}^{2}}} T_{b}+\frac{1}{\overline{\varepsilon_{o}^{2}}} T_{0} .
$$

Outline

(1) History and Terminology

(2) Elementary Statistics - The Scalar Analysis Problem

3 Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

Extension to Multiple Dimensions

X Now, let's turn our attention to the multi-dimensional case.
\boldsymbol{X} Instead of a scalar prior estimate T_{b}, we now consider a vector \mathbf{x}_{b}.
\mathbf{x} We can think of \mathbf{x}_{b} as representing the entire state of a numerical model at some time.
\boldsymbol{x} The elements of \mathbf{x}_{b} might be grid-point values, spherical harmonic coefficients, etc., and some elements may represent temperatures, humidity, others wind components, etc.
\times We refer to \mathbf{x}_{b} as the background.
x Similarly, we generalise the observation to a vector \mathbf{y}.
$\boldsymbol{X} \mathbf{y}$ can contain a disparate collection of observations at different locations, and of different variables.

Extension to Multiple Dimensions

x The major difference between the simple scalar example and the multi-dimensional case is that there is no longer a one-to-one correspondence between the elements of the observation vector and those of the background vector.

\boldsymbol{X} It is no longer trivial to compare observations and background.
X When the background is a state of a numerical model at some time
\Rightarrow Observations are not necessarily located at model gridpoints
\Rightarrow The observed variables (e.g. radiances) may not correspond directly with any of the variables of the model.
\Rightarrow To overcome this problem, we must assume that our model is a more-or-less complete representation of reality, so that we can always determine "model equivalents" of the observations.

Extension to Multiple Dimensions

X We formalise this by assuming the existence of an observation operator, \mathcal{H}.
\mathbf{x} Given a model-space vector, \mathbf{x}, the vector $\mathcal{H}(\mathbf{x})$ can be compared directly with \mathbf{y}, and represents the "model equivalent" of \mathbf{y}.

$$
\mathbf{x} \xrightarrow{\mathcal{H}(\cdot)} \mathcal{H}(\mathbf{x}) \rightarrow \stackrel{\Delta^{\mathscr{J}}}{\leftarrow \mathbf{y}}
$$

\mathbf{x} For now, we will assume that \mathcal{H} is perfect. I.e. it does not introduce any error, so that:

$$
\mathcal{H}\left(\mathbf{x}_{t}\right)=\mathbf{y}_{t}
$$

where \mathbf{x}_{t} is the true state, and \mathbf{y}_{t} contains the true values of the observed quantities.

Extension to Multiple Dimensions

X As we did in the scalar case, we will look for an analysis that is a linear combination of the available information:

$$
\mathbf{x}_{a}=\mathbf{F} \mathbf{x}_{b}+\mathbf{K} \mathbf{y}+\mathbf{c}
$$

where \mathbf{F} and \mathbf{K} are matrices, and where \mathbf{c} is a vector.
X If \mathcal{H} is linear, we can proceed as in the scalar case and look for a linear unbiased estimate.
\mathbf{X} In the more general case of nonlinear \mathcal{H}, we will require that error-free inputs ($\mathbf{x}_{b}=\mathbf{x}_{t}$ and $\mathbf{y}=\mathbf{y}_{t}$) produce an error-free analysis ($\mathbf{x}_{a}=\mathbf{x}_{t}$):

$$
\mathbf{x}_{t}=\mathbf{F} \mathbf{x}_{t}+\mathbf{K} \mathcal{H}\left(\mathbf{x}_{t}\right)+\mathbf{c}
$$

X Since this applies for any \mathbf{x}_{t}, we must have $\mathbf{c}=0$ and

$$
\mathbf{F} \equiv \mathbf{I}-\mathbf{K} \mathcal{H}(\cdot)
$$

X Our analysis equation is thus:

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

Extension to Multiple Dimensions

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

X Remember that in the scalar case, we had

$$
\begin{aligned}
T_{a} & =\alpha T_{o}+(1-\alpha) T_{b} \\
& =T_{b}+\alpha\left(T_{o}-T_{b}\right)
\end{aligned}
$$

\mathbf{X} We see that the matrix \mathbf{K} plays a role equivalent to that of the coefficient α.
$X K$ is called the gain matrix.
\mathbf{x} It determines the weight given to the innovation $\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)$
\mathbf{x} It handles the transformation of information defined in "observation space" to the space of model variables.

Extension to Multiple Dimensions

x The next step in deriving the analysis equation is to describe the statistical properties of the analysis errors.
x We define

$$
\begin{aligned}
\varepsilon_{a} & =\mathbf{x}_{a}-\mathbf{x}_{t} \\
\varepsilon_{b} & =\mathbf{x}_{b}-\mathbf{x}_{t} \\
\varepsilon_{o} & =\mathbf{y}-\mathbf{y}_{t}
\end{aligned}
$$

X We will assume that the errors are small, so that

$$
\mathcal{H}\left(\mathbf{x}_{b}\right)=\mathcal{H}\left(\mathbf{x}_{t}\right)+\mathbf{H} \varepsilon_{b}+O\left(\varepsilon_{b}^{2}\right)
$$

where \mathbf{H} is the Jacobian of \mathcal{H} (if \mathbf{H} is nonlinear).

Extension to Multiple Dimensions

X Substituting the expressions for the errors into our analysis equation, and using $\mathcal{H}\left(\mathbf{x}_{t}\right)=\mathbf{y}_{t}$, gives (to first order):

$$
\varepsilon_{a}=\varepsilon_{b}+\mathbf{K}\left(\varepsilon_{o}-\mathbf{H} \varepsilon_{b}\right)
$$

X As in the scalar example, we will assume that the mean errors have been removed, so that $\overline{\varepsilon_{b}}=\overline{\varepsilon_{o}}=0$. We see that this implies that $\overline{\varepsilon_{a}}=0$.
X In the scalar example, we derived the variance of the analysis error, and defined our optimal analysis to minimise this variance.
X In the multi-dimensional case, we must deal with covariances.

Covariance

\boldsymbol{x} The covariance between two variables x_{i} and x_{j} is defined as

$$
\operatorname{cov}\left(x_{i}, x_{j}\right)=\overline{\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)}
$$

\mathbf{X} Given a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)^{\mathrm{T}}$, we can arrange the covariances into a covariance matrix, \mathbf{C}, such that $C_{i j}=\operatorname{cov}\left(x_{i}, x_{j}\right)$.
x Equivalently:

$$
\mathbf{C}=\overline{(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{\mathrm{T}}}
$$

X Covariance matrices are symmetric and positive definite
\Rightarrow symmetric: $\mathbf{C}^{\top}=\mathbf{C}$
\Rightarrow positive definite: $\mathbf{z}^{\top} \mathbf{C z}$ is positive for every non-zero vector \mathbf{z}

Extension to Multiple Dimensions

x The analysis error is:

$$
\begin{aligned}
\varepsilon_{a} & =\varepsilon_{b}+\mathbf{K}\left(\varepsilon_{o}-\mathbf{H} \varepsilon_{b}\right) \\
& =(\mathbf{I}-\mathbf{K H}) \varepsilon_{b}+\mathbf{K} \varepsilon_{o}
\end{aligned}
$$

Extension to Multiple Dimensions

X The analysis error is:

$$
\begin{aligned}
\varepsilon_{a} & =\varepsilon_{b}+\mathbf{K}\left(\varepsilon_{o}-\mathbf{H} \varepsilon_{b}\right) \\
& =(\mathbf{I}-\mathbf{K H}) \varepsilon_{b}+\mathbf{K} \varepsilon_{o}
\end{aligned}
$$

X Forming the analysis error covariance matrix gives:

$$
\begin{aligned}
\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}= & \overline{\left[(\mathbf{I}-\mathbf{K H}) \varepsilon_{b}+\mathbf{K} \varepsilon_{o}\right]\left[(\mathbf{I}-\mathbf{K H}) \varepsilon_{b}+\mathbf{K} \varepsilon_{o}\right]^{\mathrm{T}}} \\
= & (\mathbf{I}-\mathbf{K H}) \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+(\mathbf{I}-\mathbf{K H} \mathbf{H}) \overline{\varepsilon_{b} \varepsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}} \\
& +\mathbf{K} \overline{\varepsilon_{o} \varepsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K} \overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
\end{aligned}
$$

X Assuming that the background and observation errors are uncorrelated (i.e. $\overline{\varepsilon_{o} \varepsilon_{b}^{\mathrm{T}}}=\overline{\varepsilon_{b} \varepsilon_{o}^{\mathrm{T}}}=0$), we find:

$$
\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K H}) \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K} \overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
$$

Extension to Multiple Dimensions

$$
\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K H}) \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K} \overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
$$

\mathbf{x} This expression is the equivalent of the expression we obtained for the error of the scalar analysis:

$$
\overline{\varepsilon_{a}^{2}}=(1-\alpha)^{2} \overline{\varepsilon_{b}^{2}}+\alpha^{2} \overline{\varepsilon_{o}^{2}}
$$

X Again, we see that \mathbf{K} plays essentially the same role in the multi-dimensional analysis as α plays in the scalar case.
X In the scalar case, we chose α to minimise the variance of the analysis error.
x What do we mean by the minimum-variance analysis in the multi-dimensional case?

Extension to Multiple Dimensions

x Note that the diagonal elements of a covariance matrix are variances $C_{i i}=\operatorname{cov}\left(x_{i}, x_{i}\right)=\overline{\left(x_{i}-\overline{x_{i}}\right)^{2}}$.
\mathbf{X} Hence, we can define the minimum-variance analysis as the analysis that minimises the sum of the diagonal elements of the analysis error covariance matrix.
X The sum of the diagonal elements of a matrix is called the trace.
X In the scalar case, we found the minimum-variance analysis by setting $\frac{d \overline{\varepsilon_{a}^{2}}}{d \alpha}$ to zero.
X In the multidimensional case, we are going to set

$$
\frac{\partial \operatorname{trace}\left(\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}\right)}{\partial \mathbf{K}}=\mathbf{0}
$$

\mathbf{X} Note: $\frac{\partial \operatorname{trace}\left(\overline{\varepsilon_{a} \varepsilon_{a}^{T}}\right)}{\partial \mathbf{K}}$ is the matrix whose $i j^{\text {th }}$ element is $\frac{\partial \operatorname{trace}\left(\overline{\varepsilon_{a} \varepsilon_{a}^{T}}\right)}{\partial K_{i j}}$.

Extension to Multiple Dimensions

\boldsymbol{x} We have: $\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K H}) \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K} \overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}$.
X The following matrix identities come to our rescue:

$$
\begin{aligned}
&\left.\frac{\partial \operatorname{trace}(\mathbf{K A K}}{}{ }^{\mathrm{T}}\right) \\
& \partial \mathbf{K}=\mathbf{K}\left(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\right) \\
& \frac{\partial \operatorname{trace}(\mathbf{K A})}{\partial \mathbf{K}}=\mathbf{A}^{\mathrm{T}} \\
& \frac{\partial \operatorname{trace}\left(\mathbf{A K} K^{\mathrm{T}}\right)}{\partial \mathbf{K}}=\mathbf{A}
\end{aligned}
$$

\mathbf{X} Applying these to $\partial \operatorname{trace}\left(\overline{\varepsilon_{a} \varepsilon_{a}^{T}}\right) / \partial \mathbf{K}$ gives:

$$
\frac{\partial \operatorname{trace}\left(\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}\right)}{\partial \mathbf{K}}=2 \mathbf{K}\left[\mathbf{H} \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}}\right]-2 \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}=\mathbf{0}
$$

\boldsymbol{x} Hence: $\mathbf{K}=\overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}}\right]^{-1}$.

Extension to Multiple Dimensions

$$
\mathbf{K}=\overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}}\right]^{-1}
$$

x This optimal gain matrix is called the Kalman Gain Matrix.
X Note the similarity with the optimal gain we derived for the scalar analysis: $\alpha=\overline{\varepsilon_{b}^{2}} /\left(\overline{\varepsilon_{b}^{2}}+\overline{\varepsilon_{o}^{2}}\right)$.
\mathbf{x} The variance of analysis error for the optimal scalar problem was:

$$
\frac{1}{\overline{\varepsilon_{a}^{2}}}=\frac{1}{\overline{\varepsilon_{b}^{2}}}+\frac{1}{\overline{\varepsilon_{o}^{2}}}
$$

X The equivalent expression for the multi-dimensional case is:

$$
\left[\overline{\varepsilon_{a} \varepsilon_{a}^{\mathrm{T}}}\right]^{-1}=\left[\overline{\varepsilon_{b} \varepsilon_{b}^{\mathrm{T}}}\right]^{-1}+\mathbf{H}^{\mathrm{T}}\left[\overline{\varepsilon_{o} \varepsilon_{o}^{\mathrm{T}}}\right]^{-1} \mathbf{H}
$$

Notation

x The notation we have used for covariance matrices can get a bit cumbersome.
x The standard notation is:

$$
\begin{aligned}
\mathbf{P}^{a} & \equiv \overline{\varepsilon_{a} \varepsilon_{a}^{T}} \\
\mathbf{P}^{b} & \equiv \overline{\varepsilon_{b} \varepsilon_{b}^{T}} \\
\mathbf{R} & \equiv \overline{\varepsilon_{0} \varepsilon_{0}^{T}}
\end{aligned}
$$

X In many analysis schemes, the true covariance matrix of background error, \mathbf{P}^{b}, is not known, or is too large to be used.
X In this case, we use an approximate background error covariance matrix. This approximate matrix is denoted by \mathbf{B}.

Alternative Expression for the Kalman Gain

Finally, we derive an alternative expression for the Kalman gain:

$$
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1}
$$

Multiplying both sides by $\left[\mathbf{P}^{b^{-1}}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]$ gives:

$$
\begin{aligned}
{\left[\mathbf{P}^{b^{-1}}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right] \mathbf{K} } & =\left[\mathbf{H}^{\mathrm{T}}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right]\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1} \\
& =\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left[\mathbf{R}+\mathbf{H P}^{b} \mathbf{H}^{\mathrm{T}}\right]\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1} \\
& =\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}
\end{aligned}
$$

Hence:

$$
\mathbf{K}=\left[\mathbf{P}^{b^{-1}}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}
$$

\mathbf{x} Expression 1: need the inverse of a matrix of dimension size(\mathbf{R})
\mathbf{x} Expression 2: need the inverse of a matrix of dimension size $\left(\mathbf{P}^{b}\right)$
\mathbf{X} Remember that $\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)$

Outline

(1) History and Terminology

(2) Elementary Statistics - The Scalar Analysis Problem
(3) Extension to Multiple Dimensions

4 Optimal Interpolation
(5) Summary

Optimal Interpolation

X Optimal Interpolation is a statistical data assimilation method based on the multi-dimensional analysis equations we have just derived.
X The method was used operationally at ECMWF from 1979 until 1996, when it was replaced by 3D-Var.
X The basic idea is to split the global analysis into a number of boxes which can be analysed independently:

$$
\mathbf{x}_{a}^{(i)}=\mathbf{x}_{b}^{(i)}+\mathbf{K}^{(i)}\left[\mathbf{y}^{(i)}-\mathcal{H}^{(i)}\left(\mathbf{x}_{b}\right)\right]
$$

where

$$
\mathbf{x}_{a}=\left(\begin{array}{c}
\mathbf{x}_{a}^{(1)} \\
\mathbf{x}_{a}^{(2)} \\
\vdots \\
\mathbf{x}_{a}^{(M)}
\end{array}\right) \quad \mathbf{x}_{b}=\left(\begin{array}{c}
\mathbf{x}_{b}^{(1)} \\
\mathbf{x}_{b}^{(2)} \\
\vdots \\
\mathbf{x}_{b}^{(M)}
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{c}
\mathbf{K}^{(1)} \\
\mathbf{K}^{(2)} \\
\vdots \\
\mathbf{K}^{(M)}
\end{array}\right)
$$

Optimal Interpolation

$$
\mathbf{x}_{a}^{(i)}=\mathbf{x}_{b}^{(i)}+\mathbf{K}^{(i)}\left(\mathbf{y}^{(i)}-\mathcal{H}^{(i)}\left(\mathbf{x}_{b}\right)\right)
$$

X In principle, we should use all available observations to calculate the analysis for each box. However, this is too expensive.
x To produce a computationally-feasible algorithm, Optimal Interpolation (OI) restricts the observations used for each box to those observations which lie in a surrounding selection area:

Optimal Interpolation

$$
\mathbf{x}_{a}^{(i)}=\mathbf{x}_{b}^{(i)}+\mathbf{K}^{(i)}\left(\mathbf{y}^{(i)}-\mathcal{H}^{(i)}\left(\mathbf{x}_{b}\right)\right)
$$

X In principle, we should use all available observations to calculate the analysis for each box. However, this is too expensive.
x To produce a computationally-feasible algorithm, Optimal Interpolation (OI) restricts the observations used for each box to those observations which lie in a surrounding selection area:

Optimal Interpolation

x The gain matrix used for each box is:

$$
\mathbf{K}^{(i)}=\left(\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}\left[\left(\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}+\mathbf{R}^{(i)}\right]^{-1}
$$

\mathbf{x} Now, the dimension of the matrix $\left[\left(\mathbf{H P}^{b} \mathbf{H}^{T}\right)^{(i)}+\mathbf{R}^{(i)}\right]$ is equal to the number of observations in the selection box.
X Selecting observations reduces the size of this matrix, making it feasible to use direct solution methods to invert it.
\mathbf{X} Note that to implement Optimal Interpolation, we have to specify $\left(\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}$ and $\left(\mathbf{H P}^{b} \mathbf{H}^{T}\right)^{(i)}$. This effectively limits us to very simple observation operators, corresponding to simple interpolations.
x This, together with the artifacts introduced by observation selection, was one of the main reasons for abandoning Optimal Interpolation in favour of 3D-Var.

Outline

(1) History and Terminology

(2) Elementary Statistics - The Scalar Analysis Problem

(3) Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

Summary

X We derived the linear analysis equation for a simple scalar example.
x We showed that a particular choice of the weight α given to the observation resulted in an optimal minimum-variance analysis.
x We repeated the derivation for the multi-dimensional case. This required the introduction of the observation operator.
X The derivation for the multi-dimensional case closely parallelled the scalar derivation.
X The expressions for the gain matrix and analysis error covariance matrix were recognisably similar to the corresponding scalar expressions.
X Finally, we considered the practical implementation of the analysis equation, in an Optimal Interpolation data assimilation scheme.

