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Parametrizations in Data Assimilation

• Introduction

• Why are physical parametrizations needed in data assimilation?

• Tangent-linear and adjoint coding

• Issues related to physical parametrizations in data assimilation

• Physical parametrizations in ECMWF’s current 4D-Var system

• Examples of applications

• Summary and conclusions



Observations

with errors

a priori information from model 

= background state with errors

Data assimilation system 

(e.g. 4D-Var)

Analysis

Forecast

NWP model

Data assimilation



Model trajectory from 

first guess xb

time15129

xb

All observations yo between 

ta-9h and ta+3h are valid at 

their actual time

yo

analysis time ta

4D-Var

6

xa

Model trajectory from 

corrected initial state

3

model state

assimilation window

initial time t0

4D-Var produces the analysis (xa) that minimizes the distance to a set of

available observations (yo) under the constraint of some a priori background

information from the model (xb) and given the respective errors of observations

and model background.
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4D-Var

Adjoint of forecast model with simplified linearized physics 

(simplified: to reduce computational cost and to avoid non-linear processes)  
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where:  i = time index (inside 4D-Var window, typ. 12h).

x0 = x0  xb
0 (increment).

Hi = tangent-linear of observation operator.

Mi = tangent-linear of forecast model (t0  ti).

di = yo
i  Hi(Mi[x

b
0])  (innovation vector).

B = background error covariance matrix.

Ri = observation error covariance matrix.

Incremental 4D-Var minimizes the following cost function:



Why do we need physical parametrizations in DA?

Physical parametrizations are needed in data assimilation:

1) To evolve the model state in time during the 4D-Var assimilation,

2) To convert the model state variables to observed equivalents,

 so that obsmodel differences can be computed at obs time.
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= satellite cloudy radiances

time ti

model 

initial 

state

For example:

M = forecast model with physics

H = radiative transfer model
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Why do we need physical parametrizations in DA?

Tangent-linear operators are applied to perturbations:















































 

























3

2

1

0
0

~],[

ch

ch

ch

i

ice

liq

s

v

i

s

v

Rad

Rad

Rad

q

q

P

v

u

q

T

P

v

u

q

T

tt































yδδx
HM

time ti

time t0

Adjoint operators are applied to cost function gradient:
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from Marécal and

Mahfouf (2002)

Betts-Miller (adjustment 

scheme)

Jacobians of surface rainfall rate w.r.t. T and qv

Tiedtke (ECMWF’s oper 

mass-flux scheme)

The choice of physical parametrizations will affect the results of 4D-Var

M: input = model state (T,qv)   output = surface convective rainfall rate
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A glimpse of tangent-linear and adjoint coding

• Simplified nonlinear code: Z = a / X2 + b Y log(W)

• Tangent-linear code: Z = (2 a / X3) X + b log(W) Y + (b Y / W) W

• Adjoint code: X* = 0

Y* = 0

W* = 0

X* = X*  (2 a / X3) Z*

Y* = Y* + b log(W) Z*

W* = W* + (b Y / W) Z*

Z* = 0



Testing the tangent-linear code

The correctness of the tangent-linear model must be assessed by 

checking that the first-order Taylor approximation is valid: 

Example of output from a successful tangent-linear test:

Machine 

precision 

reached

Improvement 

when 

perturbation size 

decreases

Tiny perturbations

Larger perturbations



Testing the adjoint code

The correctness of the adjoint model needs to be assessed by checking

that it satisfies the mathematical relationship: 

The adjoint test should be correct at the level of machine precision 

(e.g. at least 11 identical digits for a 12h global integration of the IFS 

at 50 km resolution). 

Otherwise there must be a bug in the code (or in the test itself)!

Example of output from a successful adjoint test:

<M x,        y> = 0.13765102625164E-01

<     x, MT y> = 0.13765102625168E-01

The difference is 11.351 times the zero of the machine

where M is the tangent-linear model and MT is the adjoint model.



Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis is 

performed in a (quasi-)linear framework.

• However, in the case of physical processes, strong non-linearities can occur in 

the presence of discontinuous/non-differentiable processes 

(e.g. switches or thresholds in cloud water and precipitation formation).

 “Regularization” needs to be applied: smoothing of functions, reduction of 

some perturbations.

Dy (tangent-linear)

original tangent in x0

Dx (finite size perturbation)

Dy (non-linear)

x0

x

y

0

Precipitation 

formation 

rate

Cloud water amount



Illustration of discontinuity effect on cost function shape:

Model background = {Tb, qb};  Observation = RRobs

Simple parametrization of rain rate:  

RR =    {q  qsat(T)}   if q > qsat(T), 

0   otherwise
222
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Saturated background

J min

{Tb, qb}

T

Several local minima of cost functionSingle minimum of cost function

OK

q

T

Dry background

No convergence!



Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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Nonlinear finite difference: 

M(x+x) – M(x)
Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 45 **u-velocity
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Tangent-linear integration: Mx

~700 hPa zonal wind increments [m/s] from 12h model integration. 

An example of spurious TL noise caused by a threshold in the 

autoconversion formulation of the large-scale cloud scheme.

Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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with perturbation reduction in 

autoconversion
from M. Janisková
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Forecasts

Climate runs

No

Yes

OK ?

M’ M(x+x)M(x)  M’x

No

OK ?

Yes

M* <M’x,y> = <x,M*y>

No

OK ?

Yes

4D-Var (minim)

Singular Vectors 

(EPS)
OK ?

OK ?

No

No
NL

TL

AD

APPL

Debugging and testing

(incl. regularization)

Pure coding

Timing:



ECMWF operational LP package (operational 4D-Var)

Currently used in ECMWF operational 4D-Var minimizations (main simplifications with respect 

to the full non-linear versions are highlighted in red):

• Radiation: TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
- shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in non-

linear version).

- longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme: [Tompkins and Janisková 2004]

- based on a uniform PDF to describe subgrid-scale fluctuations of total water.

- melting of snow included.

- precipitation evaporation included.

- reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme: [Lopez and Moreau 2005]

- mass-flux approach [Tiedtke 1989].

- deep convection (CAPE closure) and shallow convection (q-convergence) are treated.

- perturbations of all convective quantities are included.

- coupling with cloud scheme through detrainment of liquid water from updraught.

- some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



ECMWF operational LP package (operational 4D-Var)

• RTTOV is employed to simulate radiances at individual frequencies (infrared, longwave 

and microwave, with cloud and precipitation effects included) to compute model–satellite 

departures in observation space.

• Orographic gravity wave drag: [Mahfouf 1999]

- subgrid-scale orographic effects [Lott and Miller 1997],

- only low-level blocking part is used.

• Vertical diffusion:

- mixing in the surface and planetary boundary layers,

- based on K-theory and Blackadar mixing length,

- exchange coefficients based on Louis et al. [1982], near surface,

- Monin-Obukhov higher up,

- mixed layer parametrization and PBL top entrainment recently added.

- Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag: [Oor et al. 2010]

- isotropic spectrum of non-orographic gravity waves [Scinocca 2003],

- Perturbations of output wind tendencies below 200 hPa reset to zero.



Diagnostics:

• mean absolute errors:

• relative error change:                                            (improvement if < 0)

• here:  REF = adiabatic run (i.e. no physical parametrizations in tangent-linear)

        bganbgan MM xxMxx 

%100
    




REF

REFEXP





Comparison:

Finite difference of two NL integrations   TL evolution of initial perturbations 

Examination of the accuracy of the linearization for typical analysis increments:

)()()( bganbgan MM xxMxx 

Impact of linearized physics on tangent-linear approximation

typical size of 4D-Var 

analysis increments



Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD + non-orog GWD + moist physics

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Applications



1D-Var with radar reflectivity profiles

Background

xb=(Tb,qb,…)
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Reflectivity Model (ADJ)
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Reflectivity observations

Zobs with errors obs

K = number of model vertical levels

Analysis

xa=x

yes

no
?0 Jx
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Impact of ECMWF linearized physics on forecast scores

Comparison of two T511 L91 4D-Var 3-month experiments with & without 

full linearized physics: Relative change in forecast anomaly correlation.

> 0 =☺



Physics parameter optimization

Idea: It might be feasible to optimize the values of parameters used in the

physical schemes with the variational data assimilation approach.

This would require to include the parameter(s) in the control vector of the

4D-Var data assimilation system:

   o

T

o

b

T

bb

T

b

HH

J

ypxRypx

ppBppxxBxx p









),(),(
2

1

)()(
2

1
)()(

2

1

1

11

Limitations: Only parameters that are present in both the forecast model

and the linearized simplified physics (TL & AD) can be treated in this way.

Discrepancies between the full non-linear physics and the TL & AD physics

(used in the minimization of J ) might lead to sub-optimal results.



Physics parameter optimization: an example.

Application: Solar constant (1366 W/m2) taken as the parameter to be

optimized in 4D-Var (starting from either 1500 or 1200 W/m2).

Observations used in 4D-Var manage to constraint the solar constant

back to its correct value after 2 weeks or so.



The validity of the linear assumption for precipitation quickly drops in

the first hours of the forecast, especially at higher resolution.
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Forecast time (hours)

3-km resolution

192-km resolution

Influence of time and resolution on linearity assumption in physics

Results from ensemble runs with the MC2 model (3 km resolution) 

over the Alps, from Walser et al. (2004).

Comparison of a pair of “opposite twin” experiments.

Linearity

☺



• Linearized physical parameterizations have become essential components 

of variational data assimilation systems:

 Better representation of the evolution of the atmospheric state during the 

minimization of the cost function (via the adjoint model integration).

 Extraction of information from observations that are strongly affected by 

physical processes (e.g. by clouds or precipitation).

• However, there are some limitations to the LP approach:

1) Theoretical:

The domain of validity of the linear hypothesis shrinks with increasing  

resolution and integration length.

2) Technical:

Linearized models require sustained & time-consuming attention:

 Testing tangent-linear approximation and adjoint code.

 Regularizations / simplifications to eliminate any source of instability.

 Revisions to ensure good match with reference non-linear forecast model. 

Summary and prospects (1)



Summary and prospects (2)

• In practice, it all comes down to achieving the best compromise between:

Realism

Cost Linearity

• Alternative data assimilation methods exist that do not require the 

development of linearized code, but so far none of them has been able to 

outperform 4D-Var, especially in global models:

 Ensemble Kalman Filter (EnKF; still relies on the linearity assumption),

 Particle filters (difficult to implement for high-dimensional problems).

• So what is the future of LP?



Working on linearized physics may be tedious…



…but it is for the greater good.



Summary and prospects (3)

• Eventually, it might become impractical or even impossible to make LP work

efficiently at resolutions of a few kilometres, even if the linearity constraint

can be relaxed (e.g. by using shorter 4D-Var window or weak-constraint 4D-

Var).

?
Thank you!
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Example of observation operator H (radiative transfer model): 

𝐱 =

𝑇1
⋮
𝑇𝑛
𝑞1
⋮
𝑞𝑛

՜
𝐻
𝐲 =

𝑅𝑎𝑑𝑐ℎ1
𝑅𝑎𝑑𝑐ℎ2
𝑅𝑎𝑑𝑐ℎ3

Tangent-linear operator H: 

𝐇 =

𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑇1

…
𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑇1

…
𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑞1

…
𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑞𝑛

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑞1

…
𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑞𝑛

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑇1

…
𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑞1

…
𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑞𝑛



Adjoint operator HT: 

𝐇T =

𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑇1

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑇1

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑇1

⋮
𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑇𝑛

𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑞1

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑞1

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑞1

⋮
𝜕𝑅𝑎𝑑𝑐ℎ1
𝜕𝑞𝑛

𝜕𝑅𝑎𝑑𝑐ℎ2
𝜕𝑞𝑛

𝜕𝑅𝑎𝑑𝑐ℎ3
𝜕𝑞𝑛


