Land Surface: Part III Introduction to cold processes

Gabriele Arduini & coupled processes team **gabriele.arduini@ecmwf.int**

1

Outlines

- **Snow in the climate system, an overview**
- **Snow representation in the ECMWF model:**
	- ➢ Energy/Water balance
	- ➢ Density/ Albedo / Snow cover fraction
	- ➢ Challenges of the current formulation

Snow in the climate system

- Snow cover is the seconds largest component of the Cryosphere (after seasonally frozen ground) with a mean maximum areal extend of 47 million km^2 (98% in the Northern Hemisphere, and 1/3 of the total land);
- Several fundamental physical properties of snow modulate the energy/water exchanges between the surface and the atmosphere:
	- Surface reflectance:
		- Albedo, snow-albedo feedback.
	- Thermal properties (snow insulation):
		- ♦ Effective de-coupling of heat and moisture transfers.
	- Phase changes:
		- ◆ Delayed warming during the melt period.
- \triangleright Implications for all forecasts ranges (medium to seasonal).
- \triangleright Predictability impact.
- \triangleright Climate change impacts.

(see Armstrong and Brun (2008) for a good reference of snow and climate)

Impact of snow on near-surface temperature (observations)

Snow cover acts as a fast climate switch on near-surface air temperature.

• **Near-surface air temperature (min, max, mean) drops/rises of ~10 C during snow transitions (accumulation and ablation),** mainly due to changes in the net shortwave (albedo affect).

Climatology for six climate stations in the Canadian Prairies all having more than 30 years of data

Adapted from Betts et al 2014

Snow cover and NH variability

In addition to cover a substantial part of the Northern hemisphere snow cover shows

large inter-annual variability, in particular during the accumulation period (e.g. Mid October)

This has been widely studied as potential source of long-range predictability

• Can these anomalies in snow cover in October influence winter circulation in NH?

Other teleconnections:

• Potential link between snow cover in Eurasia and Indian summer monsoon (see Peings and Douville 2010)

Snow cover and NH variability

October snow cover anomalies (Eurasia) correlated with

• The spatial anomaly patterns resemble the Artic Oscillation pattern of variability

• This allows the development of statistical prediction models for winter variability based on early Autumn snow cover

Impact of snow on near-surface temperature (modelling)

• A **thicker** snowpack leads to **colder near-surface temperatures** (up to 4K in this example), because of the **stronger insulation** of the lower atmosphere from the warmer soil below

-4 0 +4 (Adapted from Orsolini et al. 2013)

15, between ensemble of simulations initialized with **Temperature difference (K) Ensemble-mean 2m-temperature difference at day larger values** of snow depth and ensemble initialized with **lower values** of snow depth

CMWF

7

Medium-range Case study: Boreal forest albedo

850 hPa temperature bias 20 forecasts every 3 days, March-April 1996 No data assimilation

Considering a lower value of snow Forest ALbedo was beneficial.

• Snow covered boreal forests have a much lower albedo than snow-covered grassland to their south and tundra to their north; the presence of boreal forests has a direct control on the climate of high-latitudes.

Outlines

- **Snow in the climate system, an overview**
- **Snow representation in the ECMWF model:**
	- ➢ **Energy/Water balance**
	- ➢ **Density/ Albedo / Snow cover fraction**
	- ➢ Challenges of the current formulation

Snow at ECMWF – the HTESSEL land-surface scheme

See Dutra et al. 2010 for more details

Energy balance of the snowpack in HTESSEL

11

Heat capacity and snow temperature tendency

Volumetric Snow heat capacity

ECMWF TC2019 - PA - Surface – Cold processes

The change with time of the energy of the snowpack is the product of the snow heat capacity and the variation with time of the layer-averaged snow temperature.

Heat capacity and snow temperature tendency

ECMWF TC2019 - PA - Surface – Cold processes

13

Water balance

- **Rainfall and Sublimation only over the snow cover fraction**
- **Rainfall reaches the snow at freezing point**
- **Runoff is the rate at which liquid water leaves the snowpack**
- **Runoff is generated when the liquid water content exceeds the snow liquid water capacity**

Snow density evolution

$$
\frac{1}{\rho_{\rm sn}} \frac{\partial \rho_{\rm sn}}{\partial t} = \frac{\sigma_{\rm sn}}{\eta_{\rm sn}(T_{\rm sn}, \rho_{\rm sn})} + \xi_{\rm sn}(T_{\rm sn}, \rho_{\rm sn}) + Q_{\rm sn}^{\rm INT}
$$

On the right hand side of the equation:

- 1st term: overburden : increase of density due to the snow weight
- 2nd term: thermal metamorphism: change of shape of snow crystal with time
- 3rd term: Increase of density due to internal melting \rightarrow diagnostic liquid water

Thermal metamorphism is parametrized as a function of snow temperature and density. **No explicit simulation of snow metamorphism**

Snow density evolution

$$
\frac{1}{\rho_{\rm sn}} \frac{\partial \rho_{\rm sn}}{\partial t} = \frac{\sigma_{\rm sn}}{\eta_{\rm sn}(T_{\rm sn}, \rho_{\rm sn})} + \xi_{\rm sn}(T_{\rm sn}, \rho_{\rm sn}) + Q_{\rm sn}^{\rm INT}
$$

On the right hand side of the equation:

- 1st term: overburden : increase of density due to the snow weight
- 2nd term: thermal metamorphism: change of shape of snow crystal with time
- 3rd term: Increase of density due to internal melting \rightarrow diagnostic liquid water

What about new snow after a snowfall?

- New snow density updated after snowfall;
- Snowfall density (p_{new}) as a function of Wind speed and air temperature.

Snow albedo evolution over open/exposed area

For snow in exposed area snow albedo is a prognostic field, computed using an empirical parametrization for snow aging

$$
\alpha_{\rm sn}^{t+1} = \begin{cases} \alpha_{\rm sn}^t - \tau_a \Delta t / \tau_1, & M_{\rm sn} = 0\\ (\alpha_{\rm sn}^t - \alpha_{\rm min}) \exp(-\tau_f \Delta t / \tau_1) + \alpha_{\rm min}, & M_{\rm sn} > 0 \end{cases}
$$

The rate of change of albedo depends on the snow conditions:

- **Non melting:** linear decay (**blue line**);
- **Melting conditions:** exponential (**green line**);
- In melting conditions snow gets darker at a faster rate.

17

appropriate to avoid the coupling between • A parametrization based on snow microphysical properties (optical diameter) would be more albedo and snow temperature

Snow albedo evolution over open/exposed area

For snow in exposed area the temporal evolution of snow albedo is computed at each time-step using an empirical parametrization for snow aging

The rate of change of albedo depends on the snow conditions:

- **Non melting:** linear decay (**blue line**);
- **Melting conditions:** exponential (**green line**);
- In melting conditions snow gets darker at a faster rate.

18

• A parametrization based on snow microphysical properties (optical diameter) would be more appropriate to avoid the coupling between albedo and snow temperature

CMWF

• Albedo is updated after every snowfall

What about new snow after a snowfall?

• The increment depends on the amount of snow that falls: for 10kg/m^2 of snow the albedo is increased to the maximum value (0.85)

Snow albedo evolution in forest area

In high vegetation area (forests) the snow albedo is fixed to a constant value depending on the vegetation type (look-up tables)

- **Derived from Satellite data**
- **Neglect seasonal variations**
- **Neglect snow interception by the canopy**

• **For snow under high vegetation the albedo is much lower than over exposed area.**

Snow cover fraction

Snow cover fraction is the part of a grid cell of the model covered by snow.

It is parametrized as a function of snow mass and density:

$$
c_{\rm sn} = \min\!\left(1, \frac{S/\rho_{\rm sn}}{0.1}\right)
$$

We assume that when there are 10cm of snow on the ground, then the grid cell is completely covered by snow:

- **Affects the tile fraction: direct albedo effect**
- **Energy balance indirectly**

20

Snow cover fraction

Snow cover fraction is the part of a grid cell of the model covered by snow.

It is parametrized as a function of snow mass and density:

$$
c_{\rm sn} = \min\!\left(1, \frac{S/\rho_{\rm sn}}{0.1}\right)
$$

We assume that when there are 10cm of snow on the ground, then the grid cell is completely covered by snow:

- **Affects the tile fraction: direct albedo effect**
- **Energy balance indirectly**

 \rightarrow The actual snow depth, is normalized by snow cover fraction (as used by the energy balance), **leading to a depth barrier at the 10cm**

actual snow depth:

$$
D_{\rm sn} = \frac{1}{\rho_{\rm sn}} \frac{S}{c_{\rm sn}}
$$

21

Outlines

- **Snow in the climate system, an overview**
- **Snow representation in the ECMWF model:**
	- ➢ Energy/Water balance
	- ➢ Density/ Albedo / Snow cover fraction
	- ➢ **Challenges of the current formulation**

Challenges of the single-layer snow scheme

Snow is a porous medium characterized by large internal vertical gradients of temperature and density

These cannot be represented using a single snow layer!

From 1st Jan 2017 to 10th Jan 2017.

Challenges in the coupled model (ERA-I)

Several studies reported a warm bias of surface & T2m in Antarctica during the polar night

- Can it be associated with the surface turbulent fluxes under very stable conditions?
- Land-atmosphere coupling (too large snow thermal inertia)?

ECMWF

Challenges in the coupled model (Operational)

Mean error in daily minimum temperature January-March

• Wintertime minimum temperature is generally overestimated (warm bias) over the Arctic region

From one single-layer to multiple vertical layers…

Using one vertical layer to represent the snow implies that thick snowpack have a large thermal inertia. Using more than one vertical layer (multi-layer) to discretize the snowpack enables:

- a better description of the internal thermal properties of the snow (temperature and density gradients)
- to represent fast time-scales at the snow-atmosphere interface (reduced thermal inertia) \rightarrow enhanced representation of radiative cooling events

Simulations with single and multi-layer snow schemes (offline)

Point simulations (offline) at Col de Port an open area in the French Alps

SL : current single-layer snow scheme ML: new multi-layer snow scheme

Better simulations of snow mass using multiple vertical layers (up to 5):

- represented because of lower thermal inertia of • Melting events during the season better top snow layer
- Improved timing of ablation

Simulations with single and multi-layer snow schemes (coupled)

Difference of the minimum 2-metre temperature for Feb 2015 between **coupled** simulations performed using the **multi-layer snow** scheme and a **single-layer scheme**

• Simulation at horizontal resolution ~36km and 137 vertical levels;

Continuous simulations over a full year (2015) nudged towards the reanalysis in the upper troposphere

Summary

- **Snow is a major component of the climate system. Because of its unique properties, snow impacts all forecast ranges, from the medium range to seasonal.**
- **Physically-based snowpack schemes solving the energy and mass balances, are used in numerical weather predictions to simulate the space-time variability of snow and the coupling with the atmosphere.**
- **More physical complexity in the snow scheme is required to resolve snow-related processes on a range of time-scales from (sub)-diurnal to seasonal.**

