# **Post-Processing of Ensemble Forecasts**

Tim Stockdale / Renate Hagedorn
European Centre for Medium-range Weather Forecasts
t.stockdale@ecmwf.int



### Outline

- Motivation
- Methods
- Training data sets
- Results

This lecture is focussed on application to medium-range forecasts, but the theory and methods are general.

It is only an introductory lecture: some students may already be working with more advanced methods than those described



#### **Motivation**

- Raw, uncalibrated ensemble forecasts contain forecast bias and dispersion errors
- The goal of calibration is to correct for such deficiencies, i.e. to construct predictions with statistical properties similar to the observations
- A number of statistical methods exist for post-processing ensembles
- Calibration needs a record of prediction-observation pairs
  - In the (distant) past, these might come from e.g. the previous 2 months of operational forecasts
  - Nowadays, make use of large re-forecast sets covering many previous years, to allow a much more accurate calibration
  - "Observations" might be weather station data, or gridded global analyses
- Calibration of point forecasts is particularly successful at locations with long historical data records
- Calibration is often a form of downscaling



#### Calibration methods

- Bias correction
- Multiple implementation of deterministic MOS
- Ensemble dressing
- Bayesian model averaging
- Non-homogenous Gaussian regression
- Logistic regression
- Analogue method





# Bias correction

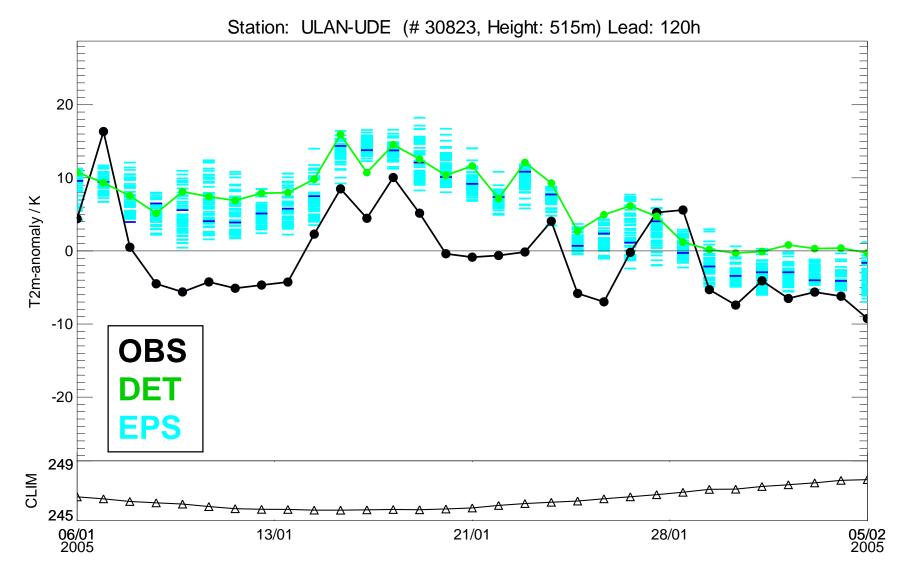
As a simple first order calibration a bias correction can be applied:

$$c = -\frac{1}{N} \sum_{i=1}^{N} \overline{e}_i + \frac{1}{N} \sum_{i=1}^{N} o_i$$

with:  $\overline{e_i}$  = ensemble mean of the i<sup>th</sup> forecast  $o_i$  = value of i<sup>th</sup> observation N = number of observation-forecast pairs

- This correction is added to each ensemble member, i.e. spread is not affected
- Particularly useful/successful at locations with features not resolved by model and causing significant bias

### Bias correction





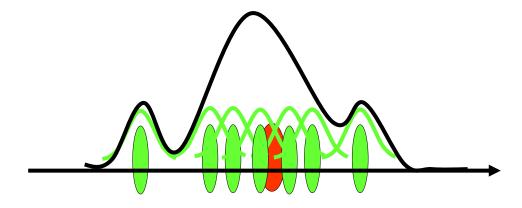
### Multiple implementation of deterministic MOS

- A possible approach for calibrating ensemble predictions is to simply correct each individual ensemble member according to its deterministic model output statistic (MOS)
- **BUT**: this approach is conceptually inappropriate since for longer lead-times the MOS tends to correct towards climatology
  - all ensemble members tend towards climatology with longer lead-times
  - decreased spread with longer lead-times
  - in contradiction to increasing uncertainty with increasing lead-times
- (Discontinued) experimental product at http://www.nws.noaa.gov/mdl/synop/enstxt.php



### Ensemble dressing

Define a probability distribution around each ensemble member ("dressing")



- A number of methods exist to find appropriate dressing kernel ("best-member" dressing, "error" dressing, "second moment constraint" dressing, etc.)
- Average the resulting  $n_{ens}$  distributions to obtain final pdf



• (Gaussian) ensemble dressing calculates the forecast probability for the quantiles q as:

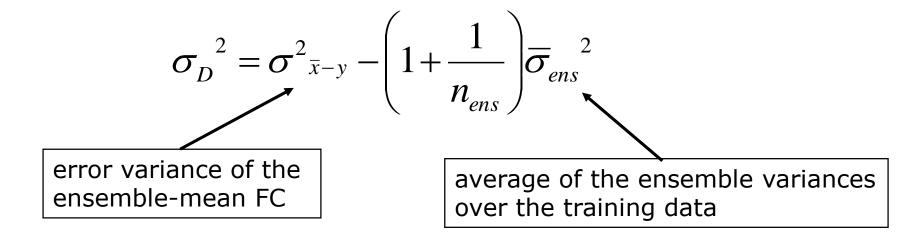
$$P(v \le q) = \frac{1}{n_{ens}} \sum_{i=1}^{n_{ens}} \Phi \left[ \frac{q - \widetilde{x}_i}{\sigma_D} \right]$$

with:  $\Phi$  = CDF of standard Gaussian distribution  $\widetilde{x}_i$  = bias-corrected ensemble-member

- Key parameter is the standard deviation of the Gaussian dressing kernel
- One simple approach: "best member" dressing, take standard deviation from r.m.s. difference of (obs-best member) from training set.



Common approach: second-moment constraint dressing



- •BUT: this can give negative or unstable variances, if model is already near to or over-dispersive.
- •Ensemble dressing to generate a pdf is only suitable for *under-dispersive* forecasts.



# Bayesian Model Averaging

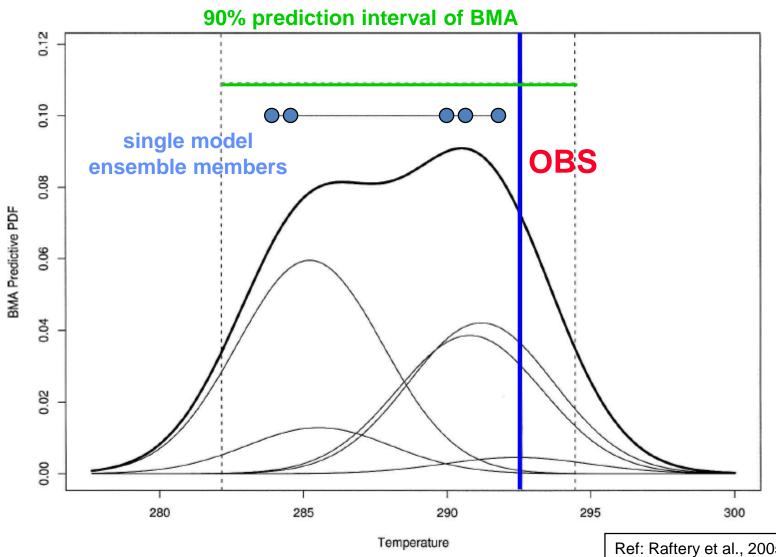
- BMA closely linked to ensemble dressing
- Differences:
  - > dressing kernels do not need to be the same for all ensemble members
  - different estimation method for kernels
- Useful for giving different ensemble members (models) different weights:

$$P(v \le q) = w_1 \Phi \left[ \frac{q - \tilde{x}_1}{\sigma_1} \right] + w_e \sum_{j=2}^{n_{ens}} \Phi \left[ \frac{q - \tilde{x}_j}{\sigma_e} \right]$$
 with:  $w_1 + w_e (n_{ens} - 1) = 1$ 

• Estimation of weights and kernels simultaneously via maximum likelihood, i.e. maximizing the log-likelihood function:

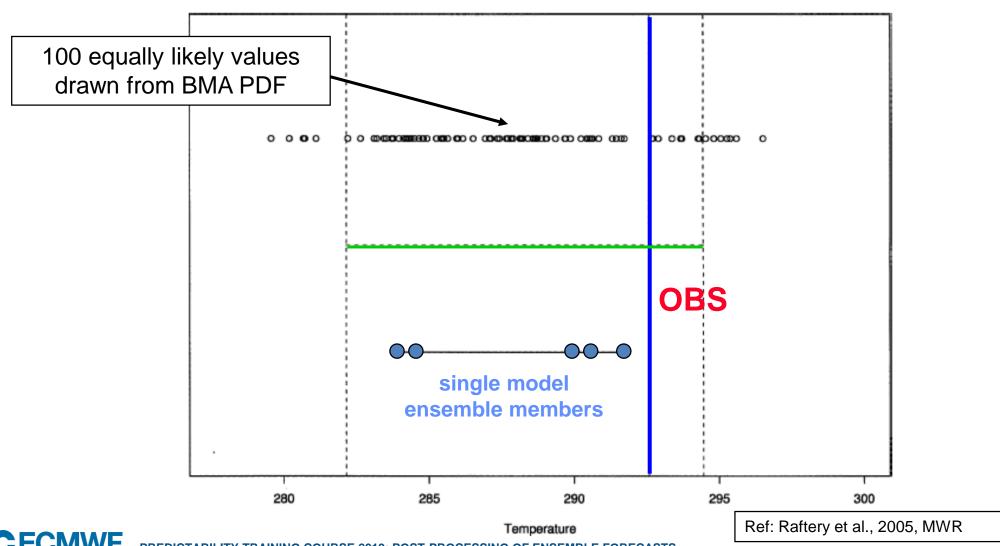
$$\ln(\Lambda) = -\sum_{i=1}^{N} \ln \left[ w_1 g_1(v_i | \widetilde{x}_{1,i}, \sigma_1^2) + w_e \sum_{j=2}^{n_{ens}} g_e(v_i | \widetilde{x}_{j,i}, \sigma_e^2) \right] g_1, g_e = \text{Gaussian PDF's}$$

## BMA: example





### BMA: recovered ensemble members





# Non-homogenous Gaussian Regression

• In order to account for existing spread-skill relationships we model the variance of the error term as a function of the ensemble spread  $s_{ens}$ :

$$P(v \le q) = \Phi \left[ \frac{q - (a + b\overline{x}_{ens})}{\sqrt{c + ds_{ens}^2}} \right]$$

- The parameters a,b,c,d are fit iteratively by minimizing the CRPS of the training data set
- Interpretation of parameters:
  - ➤ bias & general performance of ens-mean are reflected in a and b
  - $\blacktriangleright$  large spread-skill relationship:  $c \approx 0.0$ ,  $d \approx 1.0$
  - $\triangleright$  small spread-skill relationship:  $d \approx 0.0$
- Calibration provides mean and spread of Gaussian distribution
   (called non-homogenous since variances of regression errors not the same for all values of the predictor, i.e. non-homogenous)



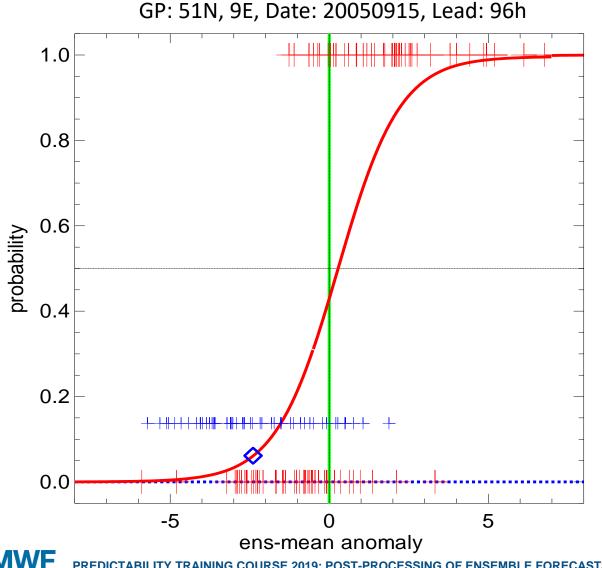
# Logistic regression

 Logistic regression is a statistical regression model for Bernoullidistributed dependent variables

$$P(v \le q) = \frac{\exp(\beta_0 + \beta_1 \overline{x}_{ens})}{1 + \exp(\beta_0 + \beta_1 \overline{x}_{ens})}$$

- P is bound by 0,1 and produces an s-shaped prediction curve
  - $\triangleright$  steepness of curve ( $\beta_I$ ) increases with decreasing spread, leading to sharper forecasts (more frequent use of extreme probabilities)
  - $\triangleright$  parameter  $\beta_0$  corrects for bias, i.e. shifts the s-shaped curve

### How does logistic regression work?



- + training data 100 cases (EnsMean) (height = obs yes/no)
- + test data (51 members) (height = raw prob)
- **c**alibrated prob

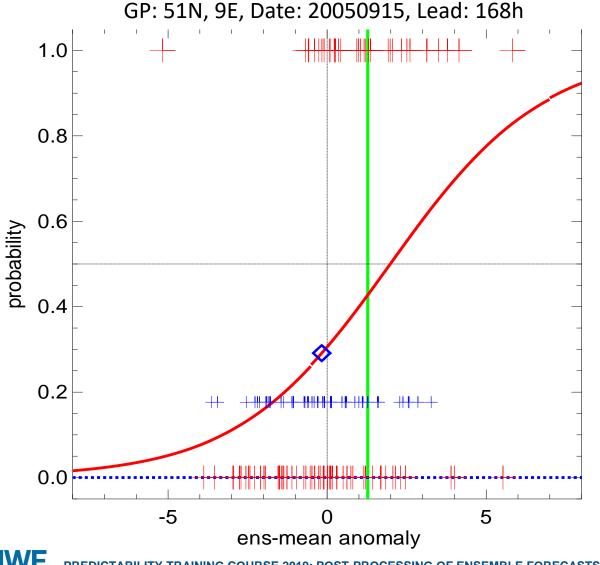
event observed yes/no (0/1)

Event did not happen in this case

event threshold



### Example: LR-Probability worse in this case



- + training data 100 cases (EM) height of obs y/n
- + test data (51 members) (height = raw prob)
- calibrated prob

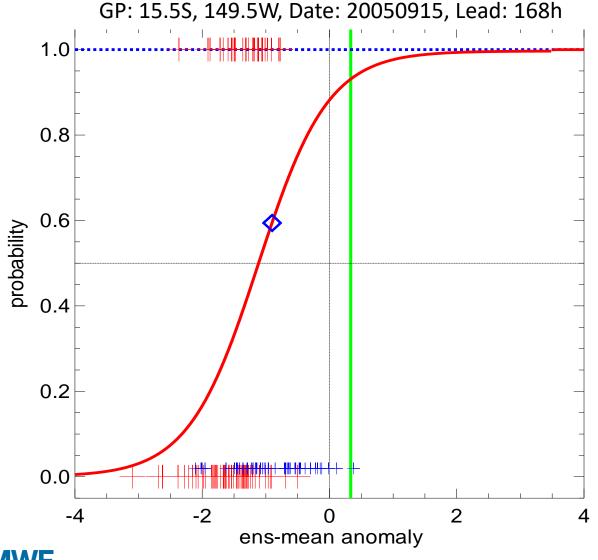
event observed yes/no (0/1)

event threshold

Event did not happen



## Example: LR-Probability (much) better!



- + training data 100 cases (EM) (height = obs y/n)
- + test data (51 members) (height = raw prob)
- calibrated prob

event observed yes/no (0/1)

Event **did** happen in this case

event threshold



### Analogue method

- Full analogue theory assumes a nearly infinite training sample
- Nonetheless, can be justified under simplifying assumptions:
  - Search only for local analogues
  - Match the ensemble-mean fields
  - Consider only one model forecast variable in selecting analogues
- General procedure:
  - Take the ensemble mean of the forecast to be calibrated and find the  $n_{ens}$  closest forecasts to this in the training dataset
  - Take the corresponding observations to these  $n_{ens}$  re-forecasts and form a new calibrated ensemble
  - Construct probability forecasts from this analogue ensemble



## Analogue method

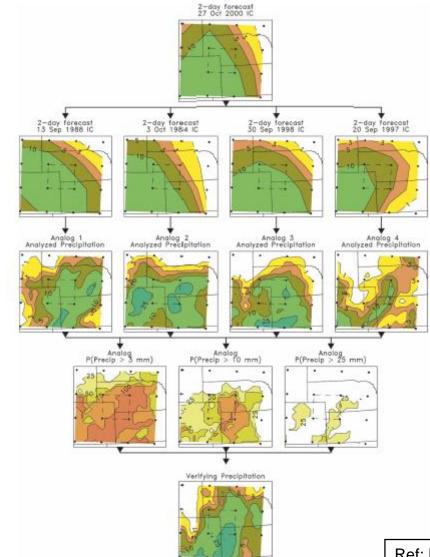
Forecast to be calibrated

Closest re-forecasts

Corresponding obs

Probabilities of analog-ens

Verifying observation





Ref: Hamill & Whitaker, 2006, MWR

### Training datasets

- All calibration methods need a training dataset, containing a number of forecast-observation pairs from the past
  - The more training cases the better
  - The model version used to produce the training dataset should be as close as possible to the operational model version
- For research applications often only one dataset is used to develop and test the calibration method. In this case cross-validation has to be applied.
- For operational applications one can use:
  - Operational available forecasts from e.g. past 30-40 days
  - Data from a re-forecast dataset covering a larger number of past forecast dates / years



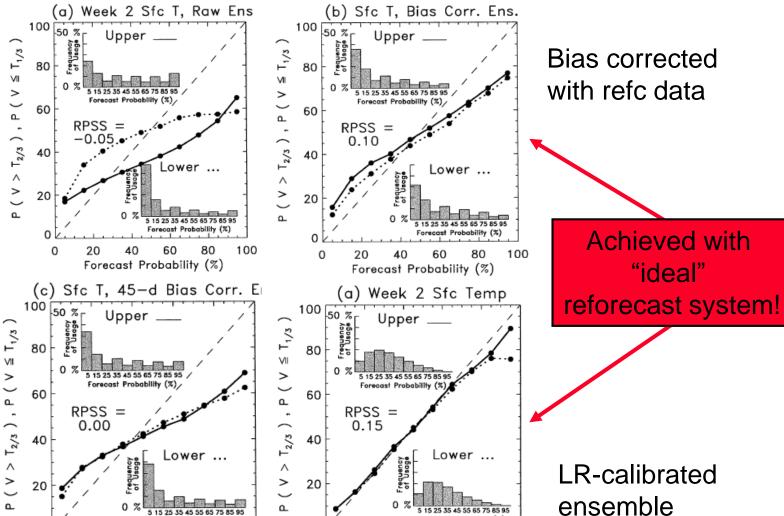
### "Ideal" Reforecast Data Set

|      | 20  | 18 | 8  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
|------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|
|      | Feb |    | Ma | ar |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | Apr |    |
|      | 27  | 28 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 01  | 02 |
| 1981 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 1982 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 1983 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 1984 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 1985 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
|      |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
|      |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 2006 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 2007 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 2008 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 2009 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |
| 2010 |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |



# Early motivating results from Hamill et al., 2004

Raw ensemble



60

Forecast Probability (%)

100

Bias corrected with 45-d data



23

Forecast Probability (%)

# The 45-day unified ENS ensemble system

- Unified ENS ensemble system enables the production of a unified reforecast data set, to be used by:
  - EFI model climate
  - 15 day ENS calibration
  - Monthly forecasts anomalies and verification
- Efficient use of resources (computational and operational)
- "Realistic" reforecast system has to be an optimal compromise between affordability and needs of all three applications
- Use 11 member ensemble, twice per week, for last 20 years



### **Unified ENS Reforecasts**

#### **Used in EFA and SOT Used in monthly forecast** 2018 Thursday Mar Feb Apr 27 28 01 02 03 04 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 24 | 25 | 26 28 | 29 | 30 | 31 | 01 | 02 05 06 07 08 09 10 11 21 | 22 | 23 27 1998 1999 2000 2001 2002 2013 2014 2015 2016 2017



## Testing the benefits of reforecast calibration

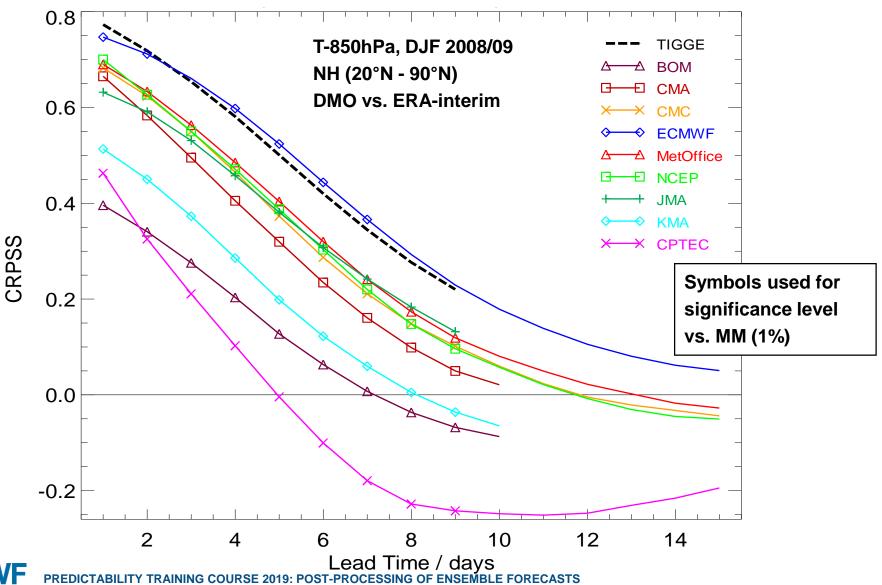
Reference: Hagedorn et al, 2012

- One goal of the TIGGE project is to investigate whether multi-model predictions are an improvement to single model forecasts
- The goal of using reforecasts to calibrate single model forecasts is to provide improved predictions
- Questions:
  - What are the relative benefits (costs) of both approaches?
  - What is the mechanism behind the improvements?
  - Which is the "better" approach?

\* TIGGE stands for: THORPEX Interactive Grand Global Ensemble

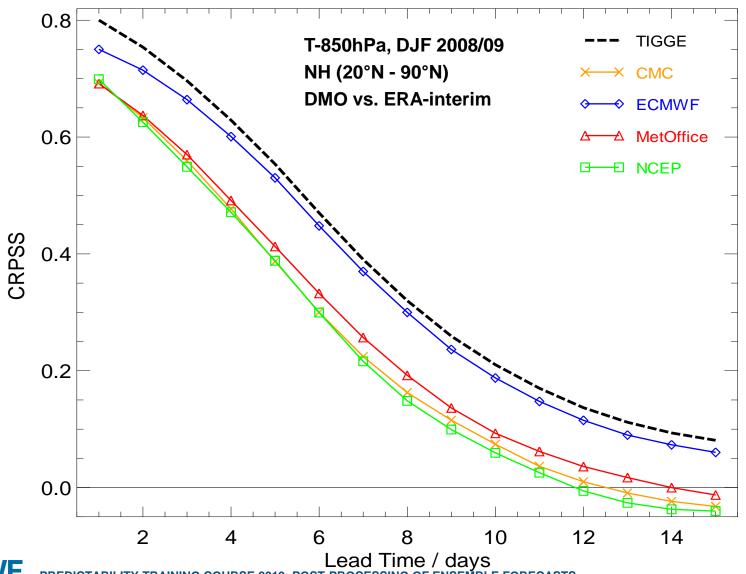


### Comparing 9 TIGGE models & the MM



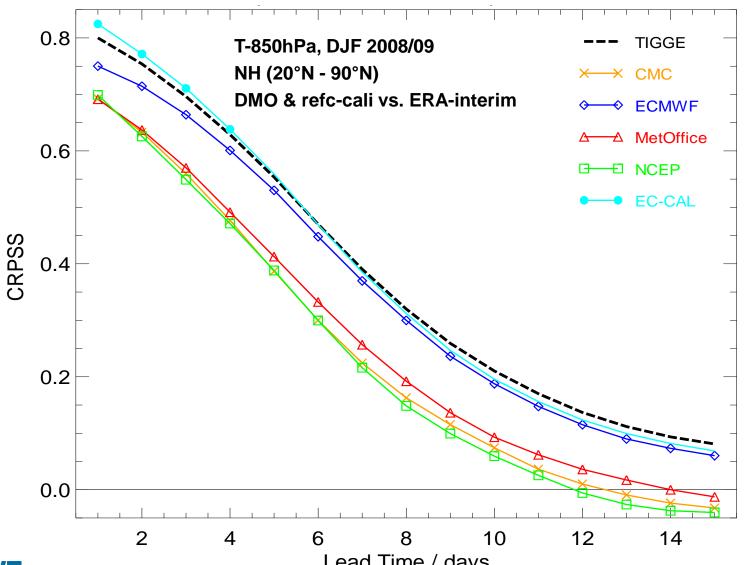


## Comparing 4 TIGGE models & the MM





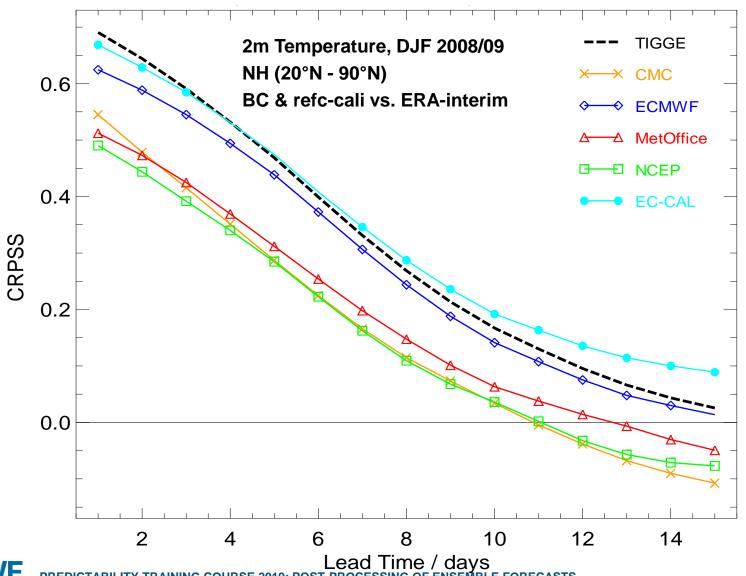
### Comparing 4 TIGGE models, MM, EC-CAL



Note: *only* ECMWF is calibrated; other models do not have re-forecast datasets

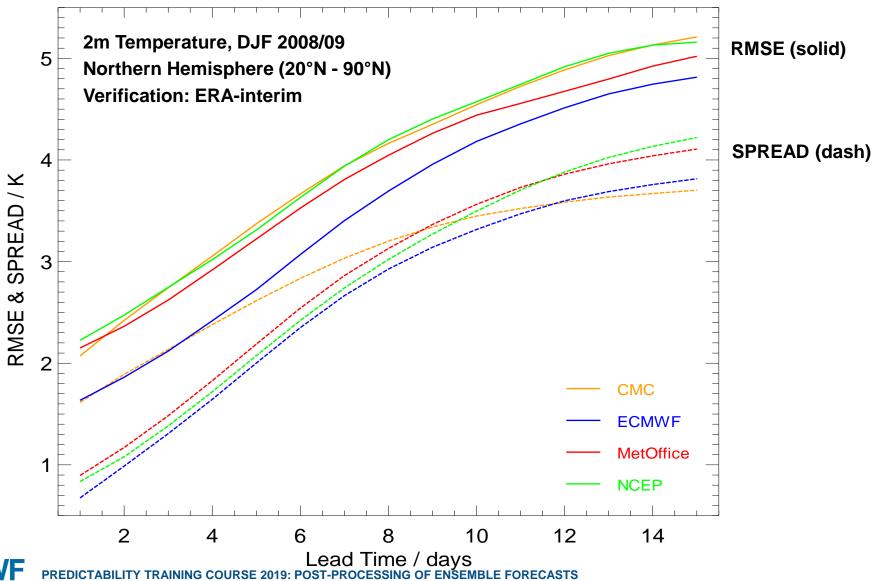


### Comparing 4 TIGGE models, MM, EC-CAL

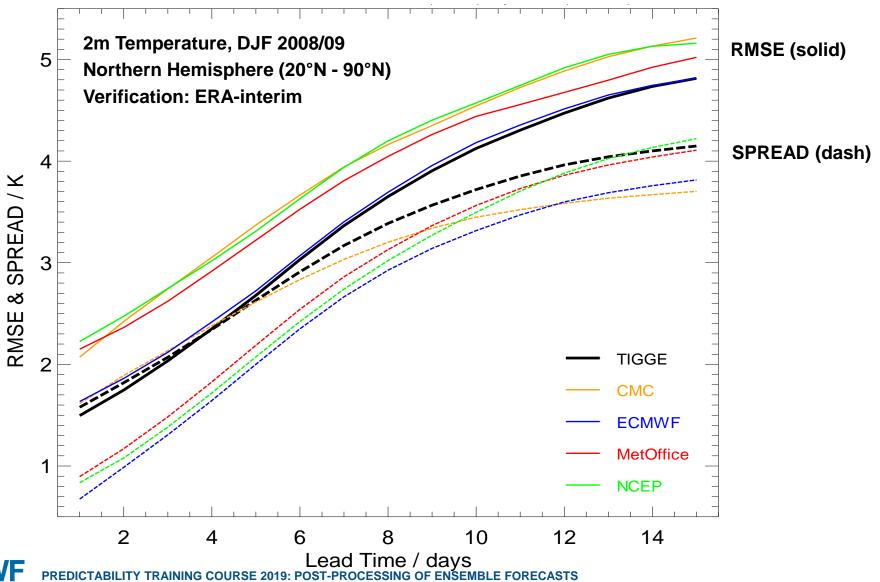




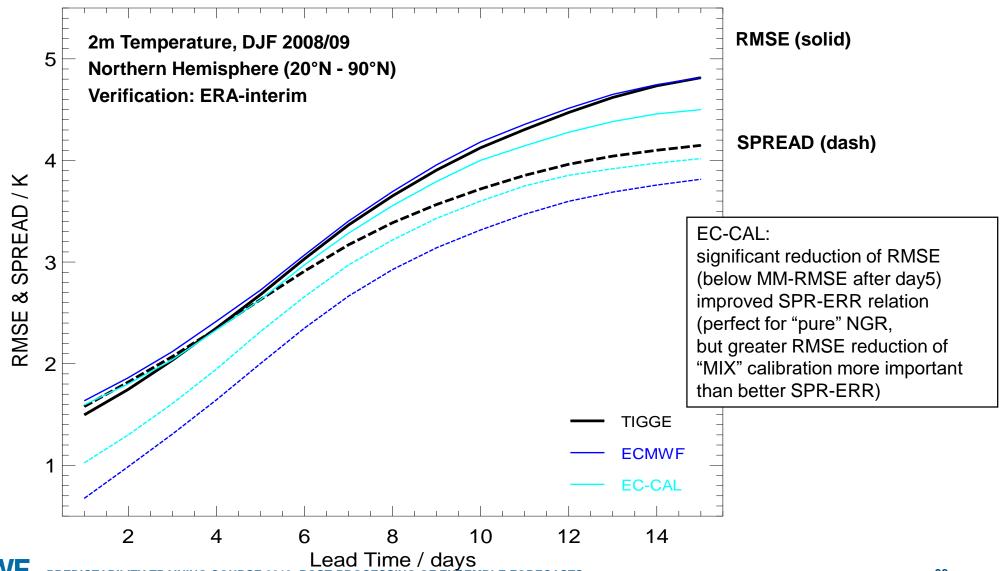
## Mechanism behind improvements



### Mechanism behind improvements

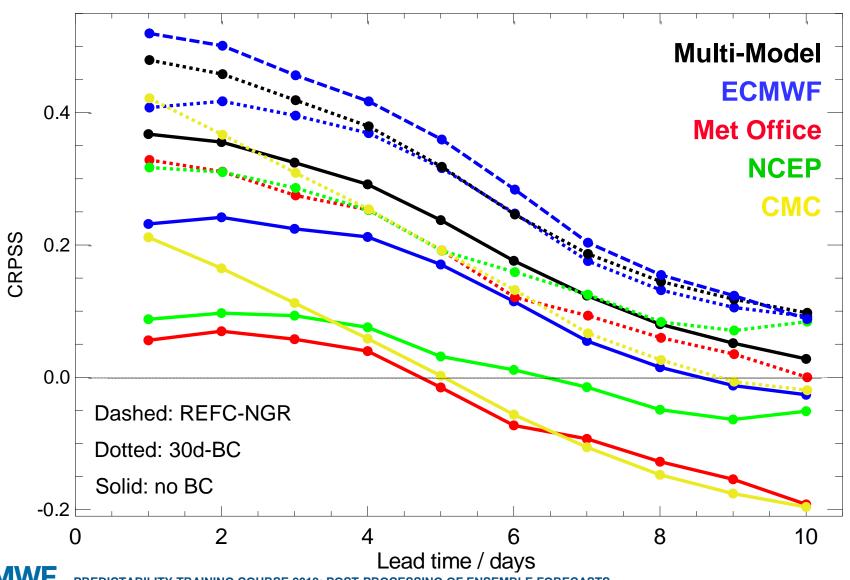


### Mechanism behind improvements



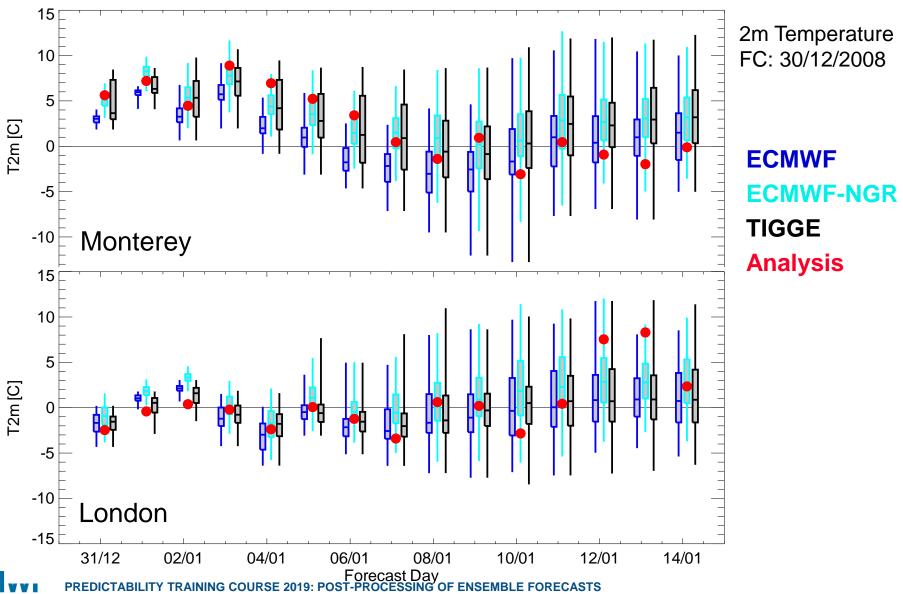
### What about station data?

T-2m, 250 European stations DJF 2008/09





## Impact of calibration & MM in EPSgrams



35

#### An alternative view ...

Reference: Hamill, 2012

- Examining precipitation forecasts over the US
- Four high skill models; compare ECMWF "re-forecast calibrated" with multi-model (no reforecasts)
- Conclusions:
- "Raw multimodel PQPFs were generally more skilful than reforecast-calibrated ECMWF PQPFs for the light precipitation events but had about the same skill for the higher-precipitation events"
- "Multimodel ensembles were also postprocessed using logistic regression and the last 30 days of prior forecasts and analyses; Postprocessed multimodel PQPFs did not provide as much improvement to the raw multimodel PQPF as the reforecast-based processing did to the ECMWF forecast."
- "The evidence presented here suggests that all operational centers, even ECMWF, would benefit from the open, real-time sharing of precipitation forecast data and the use of reforecasts."



### Summary on MM vs. calibration

- What are the relative benefits/costs of both approaches?
  - Both multi-model and a reforecast calibration approach can improve predictions, in particular for (biased and under-dispersive) near-surface parameters
- What is the mechanism behind the improvements?
  - Re-forecast calibration is effective at correcting local mis-representations in the model, and ensuring forecast uncertainty is well estimated
  - Multi-model approach can reduce forecast error as well as increasing spread; it tends to improve reliability but not necessarily in an optimal way
- Which is the "better" approach?
  - On balance, reforecast calibration seems to be the easier option for a reliable provision of medium-range forecasts in an operational environment
  - Both approaches can be useful in achieving the ultimate goal of an optimized, well tuned forecast system



### Overall summary

- The goal of calibration is to correct for known forecasting system deficiencies
- A number of statistical methods exist to post-process ensembles
- Each method has its own strengths and weaknesses
  - Analogue methods seem to be useful when large training dataset available
  - Logistic regression can be helpful for extreme events not seen so far in training dataset
  - NGR method useful when strong spread-skill relationship exists, but relatively expensive in computational time
- Greatest improvements can be achieved on local station level
- Bias correction constitutes a large contribution for all calibration methods
- ECMWF re-forecasts are a very valuable training dataset for calibration



### References and further reading

- Gneiting, T. et al, 2005: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation. *Monthly Weather Review*, **133**, 1098-1118.
- Hagedorn, R, T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble forecasts. Part I: 2-meter temperature. *Monthly Weather Review*, **136**, 2608-2619.
- Hagedorn, R., Buizza, R., Hamill, T. M., Leutbecher, M. and Palmer, T. N., 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. *Q.J.R. Meteorol. Soc.* doi: 10.1002/qj.1895
- Hamill, T.M., 2012: Verification of TIGGE Multi-model and ECMWF Reforecast-Calibrated Probabilistic Precipitation Forecasts over the Contiguous US. *Monthly Weather Review*, doi: 10.1175/MWR-D-11-00220.1
- Hamill, T.M. et al., 2004: Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using Retrospective Forecasts. Monthly Weather Review, 132, 1434-1447.
- Hamill, T.M. and J.S. Whitaker, 2006: Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application. *Monthly Weather Review*, **134**, 3209-3229.
- Raftery, A.E. et al., 2005: Using Bayesian Model Averaging to Calibrate Forecast Ensembles. *Monthly Weather Review*, **133**, 1155-1174.
- Wilks, D. S., 2006: Comparison of Ensemble-MOS Methods in the Lorenz '96 Setting. *Meteorological Applications*, **13**, 243-256.

